

emcee

Seriously Kick-Ass MCMC

emcee is an MIT licensed pure-Python implementation of Goodman & Weare’s
Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler [http://msp.berkeley.edu/camcos/2010/5-1/p04.xhtml] and these pages will
show you how to use it.

This documentation won’t teach you too much about MCMC but there are a lot
of resources available for that (try this one [http://www.inference.phy.cam.ac.uk/mackay/itila/book.html]).
We also published a paper [http://arxiv.org/abs/1202.3665] explaining
the emcee algorithm and implementation in detail.

emcee has been used in quite a few projects in the astrophysical literature and it is being actively developed on GitHub [https://github.com/dfm/emcee].

Basic Usage

If you wanted to draw samples from a 10 dimensional Gaussian, you would do
something like:

import numpy as np
import emcee

def lnprob(x, ivar):
 return -0.5 * np.sum(ivar * x ** 2)

ndim, nwalkers = 10, 100
ivar = 1. / np.random.rand(ndim)
p0 = [np.random.rand(ndim) for i in range(nwalkers)]

sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=[ivar])
sampler.run_mcmc(p0, 1000)

A more complete example is available in the quickstart documentation.

User Guide

	Installation
	Using pip

	From source

	Bleeding edge development version

	Test the installation

	Quickstart
	How to sample a multi-dimensional Gaussian

	Example: Fitting a Model to Data
	The generative probabilistic model

	Maximum likelihood estimation

	Marginalization & uncertainty estimation

	Results

	Advanced Patterns
	Incrementally saving progress

	Multiprocessing

	Arbitrary metadata blobs

	Using MPI to distribute the computations

	Loadbalancing in parallel runs

	Parallel-Tempering Ensemble MCMC
	How To Sample a Multi-Modal Gaussian

	Implementation Notes

	FAQ
	What are “walkers”?

	How should I initialize the walkers?

	Wrapping C++ code

	Parameter limits

	Troubleshooting

API Documentation

	API
	The Affine-Invariant Ensemble Sampler

	The Parallel-Tempered Ensemble Sampler

	Standard Metropolis-Hastings Sampler

	Abstract Sampler Object

	Autocorrelation Analysis

	Utilities

	Pools

Contributors

Author:

	Dan Foreman-Mackey (NYU) [https://github.com/dfm]

Direct contributions to the code base:

	Ruth Angus [https://github.com/RuthAngus]

	Bence Béky [https://github.com/bencebeky]

	Frederik Beaujean [https://github.com/fredRos]

	Alex Conley [https://github.com/aconley]

	Miguel de Val-Borro [https://github.com/migueldvb]

	Will Meierjurgen Farr [https://github.com/farr]

	Júlio Hoffimann Mendes [https://github.com/juliohm]

	David W. Hogg [https://github.com/davidwhogg]

	Dustin Lang [https://github.com/dstndstn]

	Phil Marshall [https://github.com/drphilmarshall]

	Demitri Muna [https://github.com/demitri]

	Adrian Price-Whelan [https://github.com/adrn]

	Jeremy Sanders [https://github.com/jeremysanders]

	Leo Singer [https://github.com/lpsinger]

	Manodeep Sinha [https://bitbucket.org/manodeep/]

	Marco Tazzari [https://github.com/mtazzari]

	Erik Tollerud [https://github.com/eteq]

	Simon Walker [https://github.com/mindriot101]

	Peter K. G. Williams [https://github.com/pkgw]

	Joe Zuntz [https://github.com/joezuntz]

Comments, corrections & suggestions:

	Eric Agol

	Jo Bovy

	Andrew Bradshaw

	Jacqueline Chen

	John Gizis

	Jonathan Goodman

	Jennifer Piscionere

License & Attribution

Copyright 2010-2016 Dan Foreman-Mackey and contributors.

emcee is free software made available under the MIT License. For details
see LICENSE.

If you make use of emcee in your work, please cite our paper
(arXiv [http://arxiv.org/abs/1202.3665],
ADS [http://adsabs.harvard.edu/abs/2013PASP..125..306F],
BibTeX [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2013PASP..125..306F&data_type=BIBTEX])
and consider adding your paper to the Testimonials list.

Changelog

2.2.0 (2016-07-12)

	Improved autocorrelation time computation.

	Numpy compatibility issues.

	Fixed deprecated integer division behavior in PTSampler.

2.1.0 (2014-05-22)

	Removing dependence on acor extension.

	Added arguments to PTSampler function.

	Added automatic load-balancing for MPI runs.

	Added custom load-balancing for MPI and multiprocessing.

	New default multiprocessing pool that supports ^C.

2.0.0 (2013-11-17)

	Re-licensed under the MIT license!

	Clearer less verbose documentation.

	Added checks for parameters becoming infinite or NaN.

	Added checks for log-probability becoming NaN.

	Improved parallelization and various other tweaks in PTSampler.

1.2.0 (2013-01-30)

	Added a parallel tempering sampler PTSampler.

	Added instructions and utilities for using emcee with MPI.

	Added flatlnprobability property to the EnsembleSampler object
to be consistent with the flatchain property.

	Updated document for publication in PASP.

	Various bug fixes.

1.1.3 (2012-11-22)

	Made the packaging system more robust even when numpy is not installed.

1.1.2 (2012-08-06)

	Another bug fix related to metadata blobs: the shape of the final blobs
object was incorrect and all of the entries would generally be identical
because we needed to copy the list that was appended at each step. Thanks
goes to Jacqueline Chen (MIT) for catching this problem.

1.1.1 (2012-07-30)

	Fixed bug related to metadata blobs. The sample function was yielding
the blobs object even when it wasn’t expected.

1.1.0 (2012-07-28)

	Allow the lnprobfn to return arbitrary “blobs” of data as well as the
log-probability.

	Python 3 compatible (thanks Alex Conley)!

	Various speed ups and clean ups in the core code base.

	New documentation with better examples and more discussion.

1.0.1 (2012-03-31)

	Fixed transpose bug in the usage of acor in EnsembleSampler.

1.0.0 (2012-02-15)

	Initial release.

API

This page details the methods and classes provided by the emcee module.
The main entry point is through the EnsembleSampler object.

The Affine-Invariant Ensemble Sampler

Standard usage of emcee involves instantiating an
EnsembleSampler.

	
class emcee.EnsembleSampler(nwalkers, dim, lnpostfn, a=2.0, args=[], kwargs={}, postargs=None, threads=1, pool=None, live_dangerously=False, runtime_sortingfn=None)

	A generalized Ensemble sampler that uses 2 ensembles for parallelization.
The __init__ function will raise an AssertionError if
k < 2 * dim (and you haven’t set the live_dangerously parameter)
or if k is odd.

Warning: The chain member of this object has the shape:
(nwalkers, nlinks, dim) where nlinks is the number of steps
taken by the chain and k is the number of walkers. Use the
flatchain property to get the chain flattened to
(nlinks, dim). For users of pre-1.0 versions, this shape is
different so be careful!

	Parameters

	
	nwalkers – The number of Goodman & Weare “walkers”.

	dim – Number of dimensions in the parameter space.

	lnpostfn – A function that takes a vector in the parameter space as input and
returns the natural logarithm of the posterior probability for that
position.

	a – (optional)
The proposal scale parameter. (default: 2.0)

	args – (optional)
A list of extra positional arguments for lnpostfn. lnpostfn
will be called with the sequence lnpostfn(p, *args, **kwargs).

	kwargs – (optional)
A list of extra keyword arguments for lnpostfn. lnpostfn
will be called with the sequence lnpostfn(p, *args, **kwargs).

	postargs – (optional)
Alias of args for backwards compatibility.

	threads – (optional)
The number of threads to use for parallelization. If threads == 1,
then the multiprocessing module is not used but if
threads > 1, then a Pool object is created and calls to
lnpostfn are run in parallel.

	pool – (optional)
An alternative method of using the parallelized algorithm. If
provided, the value of threads is ignored and the
object provided by pool is used for all parallelization. It
can be any object with a map method that follows the same
calling sequence as the built-in map function.

	runtime_sortingfn – (optional)
A function implementing custom runtime load-balancing. See
Loadbalancing in parallel runs for more information.

	
acceptance_fraction

	An array (length: k) of the fraction of steps accepted for each
walker.

	
acor

	An estimate of the autocorrelation time for each parameter (length:
dim).

	
blobs

	Get the list of “blobs” produced by sampling. The result is a list
(of length iterations) of list s (of length nwalkers) of
arbitrary objects. Note: this will actually be an empty list if
your lnpostfn doesn’t return any metadata.

	
chain

	A pointer to the Markov chain itself. The shape of this array is
(k, iterations, dim).

	
clear_blobs()

	Clear the blobs list.

	
clear_chain()

	An alias for reset() kept for backwards compatibility.

	
flatchain

	A shortcut for accessing chain flattened along the zeroth (walker)
axis.

	
flatlnprobability

	A shortcut to return the equivalent of lnprobability but aligned
to flatchain rather than chain.

	
get_autocorr_time(low=10, high=None, step=1, c=10, fast=False)

	Compute an estimate of the autocorrelation time for each parameter
(length: dim).

	Parameters

	
	low – (Optional[int])
The minimum window size to test.
(default: 10)

	high – (Optional[int])
The maximum window size to test.
(default: x.shape[axis] / (2*c))

	step – (Optional[int])
The step size for the window search.
(default: 1)

	c – (Optional[float])
The minimum number of autocorrelation times needed to trust the
estimate.
(default: 10)

	fast – (Optional[bool])
If True, only use the first 2^n (for the largest power)
entries for efficiency.
(default: False)

	
get_lnprob(p)

	Return the log-probability at the given position.

	
lnprobability

	A pointer to the matrix of the value of lnprobfn produced at each
step for each walker. The shape is (k, iterations).

	
random_state

	The state of the internal random number generator. In practice, it’s
the result of calling get_state() on a
numpy.random.mtrand.RandomState object. You can try to set this
property but be warned that if you do this and it fails, it will do
so silently.

	
reset()

	Clear the chain and lnprobability array. Also reset the
bookkeeping parameters.

	
run_mcmc(pos0, N, rstate0=None, lnprob0=None, **kwargs)

	Iterate sample() for N iterations and return the result.

	Parameters

	
	pos0 – The initial position vector. Can also be None to resume from
where :func:run_mcmc left off the last time it executed.

	N – The number of steps to run.

	lnprob0 – (optional)
The log posterior probability at position p0. If lnprob
is not provided, the initial value is calculated.

	rstate0 – (optional)
The state of the random number generator. See the
random_state() property for details.

	kwargs – (optional)
Other parameters that are directly passed to sample().

This returns the results of the final sample in whatever form
sample() yields. Usually, that’s:
pos, lnprob, rstate, blobs (blobs optional)

	
sample(p0, lnprob0=None, rstate0=None, blobs0=None, iterations=1, thin=1, storechain=True, mh_proposal=None)

	Advance the chain iterations steps as a generator.

	Parameters

	
	p0 – A list of the initial positions of the walkers in the
parameter space. It should have the shape (nwalkers, dim).

	lnprob0 – (optional)
The list of log posterior probabilities for the walkers at
positions given by p0. If lnprob is None, the initial
values are calculated. It should have the shape (k, dim).

	rstate0 – (optional)
The state of the random number generator.
See the Sampler.random_state property for details.

	iterations – (optional)
The number of steps to run.

	thin – (optional)
If you only want to store and yield every thin samples in the
chain, set thin to an integer greater than 1.

	storechain – (optional)
By default, the sampler stores (in memory) the positions and
log-probabilities of the samples in the chain. If you are
using another method to store the samples to a file or if you
don’t need to analyse the samples after the fact (for burn-in
for example) set storechain to False.

	mh_proposal – (optional)
A function that returns a list of positions for nwalkers
walkers given a current list of positions of the same size. See
utils.MH_proposal_axisaligned for an example.

At each iteration, this generator yields:

	pos - A list of the current positions of the walkers in the
parameter space. The shape of this object will be
(nwalkers, dim).

	lnprob - The list of log posterior probabilities for the
walkers at positions given by pos . The shape of this object
is (nwalkers, dim).

	rstate - The current state of the random number generator.

	blobs - (optional) The metadata “blobs” associated with the
current position. The value is only returned if lnpostfn
returns blobs too.

The Parallel-Tempered Ensemble Sampler

The PTSampler class performs a parallel-tempered ensemble
sampling using EnsembleSampler to sample within each
temperature. This sort of sampling is useful if you expect your
distribution to be multi-modal. Take a look at the documentation to see how you might use this class.

	
class emcee.PTSampler(ntemps, nwalkers, dim, logl, logp, threads=1, pool=None, betas=None, a=2.0, Tmax=None, loglargs=[], logpargs=[], loglkwargs={}, logpkwargs={})

	A parallel-tempered ensemble sampler, using EnsembleSampler
for sampling within each parallel chain.

	Parameters

	
	ntemps – The number of temperatures. Can be None, in which case
the Tmax argument sets the maximum temperature.

	nwalkers – The number of ensemble walkers at each temperature.

	dim – The dimension of parameter space.

	logl – The log-likelihood function.

	logp – The log-prior function.

	threads – (optional)
The number of parallel threads to use in sampling.

	pool – (optional)
Alternative to threads. Any object that implements a
map method compatible with the built-in map will do
here. For example, multi.Pool will do.

	betas – (optional)
Array giving the inverse temperatures, \(\beta=1/T\),
used in the ladder. The default is chosen so that a Gaussian
posterior in the given number of dimensions will have a 0.25
tswap acceptance rate.

	a – (optional)
Proposal scale factor.

	Tmax – (optional)
Maximum temperature for the ladder. If ntemps is
None, this argument is used to set the temperature ladder.

	loglargs – (optional)
Positional arguments for the log-likelihood function.

	logpargs – (optional)
Positional arguments for the log-prior function.

	loglkwargs – (optional)
Keyword arguments for the log-likelihood function.

	logpkwargs – (optional)
Keyword arguments for the log-prior function.

	
acceptance_fraction

	Matrix of shape (Ntemps, Nwalkers) detailing the
acceptance fraction for each walker.

	
acor

	Returns a matrix of autocorrelation lengths for each
parameter in each temperature of shape (Ntemps, Ndim).

	
betas

	Returns the sequence of inverse temperatures in the ladder.

	
chain

	Returns the stored chain of samples; shape (Ntemps,
Nwalkers, Nsteps, Ndim).

	
clear_chain()

	An alias for reset() kept for backwards compatibility.

	
flatchain

	Returns the stored chain, but flattened along the walker axis, so
of shape (Ntemps, Nwalkers*Nsteps, Ndim).

	
get_autocorr_time(**kwargs)

	Returns a matrix of autocorrelation lengths for each
parameter in each temperature of shape (Ntemps, Ndim).

Any arguments will be passed to autocorr.integrate_time().

	
get_lnprob(p)

	Return the log-probability at the given position.

	
lnlikelihood

	Matrix of ln-likelihood values; shape (Ntemps, Nwalkers, Nsteps).

	
lnprobability

	Matrix of lnprobability values; shape (Ntemps, Nwalkers, Nsteps).

	
random_state

	The state of the internal random number generator. In practice, it’s
the result of calling get_state() on a
numpy.random.mtrand.RandomState object. You can try to set this
property but be warned that if you do this and it fails, it will do
so silently.

	
reset()

	Clear the chain, lnprobability, lnlikelihood,
acceptance_fraction, tswap_acceptance_fraction stored
properties.

	
run_mcmc(pos0, N, rstate0=None, lnprob0=None, **kwargs)

	Iterate sample() for N iterations and return the result.

	Parameters

	
	pos0 – The initial position vector. Can also be None to resume from
where :func:run_mcmc left off the last time it executed.

	N – The number of steps to run.

	lnprob0 – (optional)
The log posterior probability at position p0. If lnprob
is not provided, the initial value is calculated.

	rstate0 – (optional)
The state of the random number generator. See the
random_state() property for details.

	kwargs – (optional)
Other parameters that are directly passed to sample().

This returns the results of the final sample in whatever form
sample() yields. Usually, that’s:
pos, lnprob, rstate, blobs (blobs optional)

	
sample(p0, lnprob0=None, lnlike0=None, iterations=1, thin=1, storechain=True)

	Advance the chains iterations steps as a generator.

	Parameters

	
	p0 – The initial positions of the walkers. Shape should be
(ntemps, nwalkers, dim).

	lnprob0 – (optional)
The initial posterior values for the ensembles. Shape
(ntemps, nwalkers).

	lnlike0 – (optional)
The initial likelihood values for the ensembles. Shape
(ntemps, nwalkers).

	iterations – (optional)
The number of iterations to preform.

	thin – (optional)
The number of iterations to perform between saving the
state to the internal chain.

	storechain – (optional)
If True store the iterations in the chain
property.

At each iteration, this generator yields

	p, the current position of the walkers.

	lnprob the current posterior values for the walkers.

	lnlike the current likelihood values for the walkers.

	
thermodynamic_integration_log_evidence(logls=None, fburnin=0.1)

	Thermodynamic integration estimate of the evidence.

	Parameters

	
	logls – (optional) The log-likelihoods to use for
computing the thermodynamic evidence. If None (the
default), use the stored log-likelihoods in the sampler.
Should be of shape (Ntemps, Nwalkers, Nsamples).

	fburnin – (optional)
The fraction of the chain to discard as burnin samples; only the
final 1-fburnin fraction of the samples will be used to
compute the evidence; the default is fburnin = 0.1.

	Return (lnZ, dlnZ)(lnZ, dlnZ)

	Returns an estimate of the
log-evidence and the error associated with the finite
number of temperatures at which the posterior has been
sampled.

The evidence is the integral of the un-normalized posterior
over all of parameter space:

\[Z \equiv \int d\theta \, l(\theta) p(\theta)\]

Thermodymanic integration is a technique for estimating the
evidence integral using information from the chains at various
temperatures. Let

\[Z(\beta) = \int d\theta \, l^\beta(\theta) p(\theta)\]

Then

\[\frac{d \ln Z}{d \beta}
= \frac{1}{Z(\beta)} \int d\theta l^\beta p \ln l
= \left \langle \ln l \right \rangle_\beta\]

so

\[\ln Z(\beta = 1)
= \int_0^1 d\beta \left \langle \ln l \right\rangle_\beta\]

By computing the average of the log-likelihood at the
difference temperatures, the sampler can approximate the above
integral.

	
tswap_acceptance_fraction

	Returns an array of accepted temperature swap fractions for
each temperature; shape (ntemps,).

Standard Metropolis-Hastings Sampler

The Metropolis-Hastings [http://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm]
sampler included in this module is far from fine-tuned and optimized. It
is, however, stable and it has a consistent API so it can be useful for
testing and comparison.

	
class emcee.MHSampler(cov, *args, **kwargs)

	The most basic possible Metropolis-Hastings style MCMC sampler

	Parameters

	
	cov – The covariance matrix to use for the proposal distribution.

	dim – Number of dimensions in the parameter space.

	lnpostfn – A function that takes a vector in the parameter space as input and
returns the natural logarithm of the posterior probability for that
position.

	args – (optional)
A list of extra positional arguments for lnpostfn. lnpostfn
will be called with the sequence lnpostfn(p, *args, **kwargs).

	kwargs – (optional)
A list of extra keyword arguments for lnpostfn. lnpostfn
will be called with the sequence lnpostfn(p, *args, **kwargs).

	
acceptance_fraction

	The fraction of proposed steps that were accepted.

	
acor

	An estimate of the autocorrelation time for each parameter (length:
dim).

	
chain

	A pointer to the Markov chain.

	
clear_chain()

	An alias for reset() kept for backwards compatibility.

	
flatchain

	Alias of chain provided for compatibility.

	
get_autocorr_time(low=10, high=None, step=1, c=10, fast=False)

	Compute an estimate of the autocorrelation time for each parameter
(length: dim).

	Parameters

	
	low – (Optional[int])
The minimum window size to test.
(default: 10)

	high – (Optional[int])
The maximum window size to test.
(default: x.shape[axis] / (2*c))

	step – (Optional[int])
The step size for the window search.
(default: 1)

	c – (Optional[float])
The minimum number of autocorrelation times needed to trust the
estimate.
(default: 10)

	fast – (Optional[bool])
If True, only use the first 2^n (for the largest power)
entries for efficiency.
(default: False)

	
get_lnprob(p)

	Return the log-probability at the given position.

	
lnprobability

	A list of the log-probability values associated with each step in
the chain.

	
random_state

	The state of the internal random number generator. In practice, it’s
the result of calling get_state() on a
numpy.random.mtrand.RandomState object. You can try to set this
property but be warned that if you do this and it fails, it will do
so silently.

	
run_mcmc(pos0, N, rstate0=None, lnprob0=None, **kwargs)

	Iterate sample() for N iterations and return the result.

	Parameters

	
	pos0 – The initial position vector. Can also be None to resume from
where :func:run_mcmc left off the last time it executed.

	N – The number of steps to run.

	lnprob0 – (optional)
The log posterior probability at position p0. If lnprob
is not provided, the initial value is calculated.

	rstate0 – (optional)
The state of the random number generator. See the
random_state() property for details.

	kwargs – (optional)
Other parameters that are directly passed to sample().

This returns the results of the final sample in whatever form
sample() yields. Usually, that’s:
pos, lnprob, rstate, blobs (blobs optional)

	
sample(p0, lnprob=None, randomstate=None, thin=1, storechain=True, iterations=1)

	Advances the chain iterations steps as an iterator

	Parameters

	
	p0 – The initial position vector.

	lnprob0 – (optional)
The log posterior probability at position p0. If lnprob
is not provided, the initial value is calculated.

	rstate0 – (optional)
The state of the random number generator. See the
random_state() property for details.

	iterations – (optional)
The number of steps to run.

	thin – (optional)
If you only want to store and yield every thin samples in the
chain, set thin to an integer greater than 1.

	storechain – (optional)
By default, the sampler stores (in memory) the positions and
log-probabilities of the samples in the chain. If you are
using another method to store the samples to a file or if you
don’t need to analyse the samples after the fact (for burn-in
for example) set storechain to False.

At each iteration, this generator yields:

	pos - The current positions of the chain in the parameter
space.

	lnprob - The value of the log posterior at pos .

	rstate - The current state of the random number generator.

Abstract Sampler Object

This section is mostly for developers who would be interested in implementing
a new sampler for inclusion in emcee. A good starting point would be
to subclass the sampler object and override the Sampler.sample()
method.

	
class emcee.Sampler(dim, lnprobfn, args=[], kwargs={})

	An abstract sampler object that implements various helper functions

	Parameters

	
	dim – The number of dimensions in the parameter space.

	lnpostfn – A function that takes a vector in the parameter space as input and
returns the natural logarithm of the posterior probability for that
position.

	args – (optional)
A list of extra positional arguments for lnpostfn. lnpostfn
will be called with the sequence lnpostfn(p, *args, **kwargs).

	kwargs – (optional)
A list of extra keyword arguments for lnpostfn. lnpostfn
will be called with the sequence lnpostfn(p, *args, **kwargs).

	
acceptance_fraction

	The fraction of proposed steps that were accepted.

	
chain

	A pointer to the Markov chain.

	
clear_chain()

	An alias for reset() kept for backwards compatibility.

	
flatchain

	Alias of chain provided for compatibility.

	
get_lnprob(p)

	Return the log-probability at the given position.

	
lnprobability

	A list of the log-probability values associated with each step in
the chain.

	
random_state

	The state of the internal random number generator. In practice, it’s
the result of calling get_state() on a
numpy.random.mtrand.RandomState object. You can try to set this
property but be warned that if you do this and it fails, it will do
so silently.

	
reset()

	Clear chain, lnprobability and the bookkeeping parameters.

	
run_mcmc(pos0, N, rstate0=None, lnprob0=None, **kwargs)

	Iterate sample() for N iterations and return the result.

	Parameters

	
	pos0 – The initial position vector. Can also be None to resume from
where :func:run_mcmc left off the last time it executed.

	N – The number of steps to run.

	lnprob0 – (optional)
The log posterior probability at position p0. If lnprob
is not provided, the initial value is calculated.

	rstate0 – (optional)
The state of the random number generator. See the
random_state() property for details.

	kwargs – (optional)
Other parameters that are directly passed to sample().

This returns the results of the final sample in whatever form
sample() yields. Usually, that’s:
pos, lnprob, rstate, blobs (blobs optional)

Autocorrelation Analysis

A good heuristic for assessing convergence of samplings is the integrated
autocorrelation time. emcee includes (as of version 2.1.0) tools for
computing this and the autocorrelation function itself.

	
emcee.autocorr.integrated_time(x, low=10, high=None, step=1, c=10, full_output=False, axis=0, fast=False)

	Estimate the integrated autocorrelation time of a time series.

This estimate uses the iterative procedure described on page 16 of Sokal’s
notes [http://www.stat.unc.edu/faculty/cji/Sokal.pdf] to determine a
reasonable window size.

	Args:

	
	x: The time series. If multidimensional, set the time axis using the

	axis keyword argument and the function will be computed for
every other axis.

low (Optional[int]): The minimum window size to test. (default: 10)
high (Optional[int]): The maximum window size to test. (default:

x.shape[axis] / (2*c))

	step (Optional[int]): The step size for the window search. (default:

	1)

	c (Optional[float]): The minimum number of autocorrelation times

	needed to trust the estimate. (default: 10)

	full_output (Optional[bool]): Return the final window size as well as

	the autocorrelation time. (default: False)

	axis (Optional[int]): The time axis of x. Assumed to be the first

	axis if not specified.

	fast (Optional[bool]): If True, only use the first 2^n (for

	the largest power) entries for efficiency. (default: False)

	Returns:

	
	float or array: An estimate of the integrated autocorrelation time of

	the time series x computed along the axis axis.

	Optional[int]: The final window size that was used. Only returned if

	full_output is True.

	Raises

	
	AutocorrError: If the autocorrelation time can’t be reliably estimated

	from the chain. This normally means that the chain is too short.

	
emcee.autocorr.function(x, axis=0, fast=False)

	Estimate the autocorrelation function of a time series using the FFT.

	Args:

	
	x: The time series. If multidimensional, set the time axis using the

	axis keyword argument and the function will be computed for
every other axis.

	axis (Optional[int]): The time axis of x. Assumed to be the first

	axis if not specified.

	fast (Optional[bool]): If True, only use the first 2^n (for

	the largest power) entries for efficiency. (default: False)

	Returns:

	array: The autocorrelation function of the time series.

Utilities

	
emcee.utils.sample_ball(p0, std, size=1)

	Produce a ball of walkers around an initial parameter value.

	Parameters

	
	p0 – The initial parameter value.

	std – The axis-aligned standard deviation.

	size – The number of samples to produce.

	
class emcee.utils.MH_proposal_axisaligned(stdev)

	A Metropolis-Hastings proposal, with axis-aligned Gaussian steps,
for convenient use as the mh_proposal option to
EnsembleSampler.sample() .

Pools

These are some helper classes for using the built-in parallel version of the
algorithm. These objects can be initialized and then passed into the
constructor for the EnsembleSampler object using the pool keyword
argument.

Interruptible Pool

Python’s multiprocessing.Pool class doesn’t interact well with
KeyboardInterrupt signals, as documented in places such as:

	http://stackoverflow.com/questions/1408356/

	http://stackoverflow.com/questions/11312525/

	http://noswap.com/blog/python-multiprocessing-keyboardinterrupt

Various workarounds have been shared. Here, we adapt the one proposed in the
last link above, by John Reese, and shared as

	https://github.com/jreese/multiprocessing-keyboardinterrupt/

Our version is a drop-in replacement for multiprocessing.Pool … as long as
the map() method is the only one that needs to be interrupt-friendly.

Contributed by Peter K. G. Williams <peter@newton.cx>.

Added in version 2.1.0

	
class emcee.interruptible_pool.InterruptiblePool(processes=None, initializer=None, initargs=(), **kwargs)

	A modified version of multiprocessing.pool.Pool that has better
behavior with regard to KeyboardInterrupts in the map() method.

	Parameters

	
	processes – (optional)
The number of worker processes to use; defaults to the number of CPUs.

	initializer – (optional)
Either None, or a callable that will be invoked by each worker
process when it starts.

	initargs – (optional)
Arguments for initializer; it will be called as
initializer(*initargs).

	kwargs – (optional)
Extra arguments. Python 2.7 supports a maxtasksperchild parameter.

	
map(func, iterable, chunksize=None)

	Equivalent of map() built-in, without swallowing
KeyboardInterrupt.

	Parameters

	
	func – The function to apply to the items.

	iterable – An iterable of items that will have func applied to them.

MPI Pool

Built-in support for MPI distributed systems. See the documentation:
Using MPI to distribute the computations.

	
class emcee.utils.MPIPool(comm=None, debug=False, loadbalance=False)

	A pool that distributes tasks over a set of MPI processes. MPI is an
API for distributed memory parallelism. This pool will let you run
emcee without shared memory, letting you use much larger machines
with emcee.

The pool only support the map() method at the moment because
this is the only functionality that emcee needs. That being said,
this pool is fairly general and it could be used for other purposes.

Contributed by Joe Zuntz [https://github.com/joezuntz].

	Parameters

	
	comm – (optional)
The mpi4py communicator.

	debug – (optional)
If True, print out a lot of status updates at each step.

	loadbalance – (optional)
if True and ntask > Ncpus, tries to loadbalance by sending
out one task to each cpu first and then sending out the rest
as the cpus get done.

	
bcast(*args, **kwargs)

	Equivalent to mpi4py bcast() collective operation.

	
close()

	Just send a message off to all the pool members which contains
the special _close_pool_message sentinel.

	
is_master()

	Is the current process the master?

	
map(function, tasks)

	Like the built-in map() function, apply a function to all
of the values in a list and return the list of results.

	Parameters

	
	function – The function to apply to the list.

	tasks – The list of elements.

	
wait()

	If this isn’t the master process, wait for instructions.

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 emcee	

 	
 	
 emcee.interruptible_pool	

Index

 A
 | B
 | C
 | E
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | T
 | W

A

 	
 	acceptance_fraction (emcee.EnsembleSampler attribute)

 	(emcee.MHSampler attribute)

 	(emcee.PTSampler attribute)

 	(emcee.Sampler attribute)

 	
 	acor (emcee.EnsembleSampler attribute)

 	(emcee.MHSampler attribute)

 	(emcee.PTSampler attribute)

B

 	
 	bcast() (emcee.utils.MPIPool method)

 	
 	betas (emcee.PTSampler attribute)

 	blobs (emcee.EnsembleSampler attribute)

C

 	
 	chain (emcee.EnsembleSampler attribute)

 	(emcee.MHSampler attribute)

 	(emcee.PTSampler attribute)

 	(emcee.Sampler attribute)

 	clear_blobs() (emcee.EnsembleSampler method)

 	
 	clear_chain() (emcee.EnsembleSampler method)

 	(emcee.MHSampler method)

 	(emcee.PTSampler method)

 	(emcee.Sampler method)

 	close() (emcee.utils.MPIPool method)

E

 	
 	emcee (module), [1], [2], [3]

 	
 	emcee.interruptible_pool (module)

 	EnsembleSampler (class in emcee)

F

 	
 	flatchain (emcee.EnsembleSampler attribute)

 	(emcee.MHSampler attribute)

 	(emcee.PTSampler attribute)

 	(emcee.Sampler attribute)

 	
 	flatlnprobability (emcee.EnsembleSampler attribute)

 	function() (in module emcee.autocorr)

G

 	
 	get_autocorr_time() (emcee.EnsembleSampler method)

 	(emcee.MHSampler method)

 	(emcee.PTSampler method)

 	
 	get_lnprob() (emcee.EnsembleSampler method)

 	(emcee.MHSampler method)

 	(emcee.PTSampler method)

 	(emcee.Sampler method)

I

 	
 	integrated_time() (in module emcee.autocorr)

 	
 	InterruptiblePool (class in emcee.interruptible_pool)

 	is_master() (emcee.utils.MPIPool method)

L

 	
 	lnlikelihood (emcee.PTSampler attribute)

 	lnprobability (emcee.EnsembleSampler attribute)

 	(emcee.MHSampler attribute)

 	(emcee.PTSampler attribute)

 	(emcee.Sampler attribute)

M

 	
 	map() (emcee.interruptible_pool.InterruptiblePool method)

 	(emcee.utils.MPIPool method)

 	
 	MH_proposal_axisaligned (class in emcee.utils)

 	MHSampler (class in emcee)

 	MPIPool (class in emcee.utils)

P

 	
 	PTSampler (class in emcee)

R

 	
 	random_state (emcee.EnsembleSampler attribute)

 	(emcee.MHSampler attribute)

 	(emcee.PTSampler attribute)

 	(emcee.Sampler attribute)

 	reset() (emcee.EnsembleSampler method)

 	(emcee.PTSampler method)

 	(emcee.Sampler method)

 	
 	run_mcmc() (emcee.EnsembleSampler method)

 	(emcee.MHSampler method)

 	(emcee.PTSampler method)

 	(emcee.Sampler method)

S

 	
 	sample() (emcee.EnsembleSampler method)

 	(emcee.MHSampler method)

 	(emcee.PTSampler method)

 	
 	sample_ball() (in module emcee.utils)

 	Sampler (class in emcee)

T

 	
 	thermodynamic_integration_log_evidence() (emcee.PTSampler method)

 	
 	tswap_acceptance_fraction (emcee.PTSampler attribute)

W

 	
 	wait() (emcee.utils.MPIPool method)

License

The MIT License (MIT)

Copyright (c) 2010-2013 Daniel Foreman-Mackey & contributors.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Testimonials

“My research—modeling strong gravitational lenses with 10-20 free
parameters—would be very difficult or impossible without emcee.”

—Shane Bussmann (CfA)

Since the initial release, emcee has been used in many published
scientific studies.
The most up-to-date list of citations to our paper—mostly positive ;-)—can be
found on The Astrophysics Data System (ADS) [http://adsabs.harvard.edu/cgi-bin/nph-ref_query?bibcode=2013PASP..125..306F&refs=CITATIONS].
Here is a very incomplete list of users:

	Dorman, Guhathakurta, Fardal, et al. (2012) [http://arxiv.org/abs/1204.4455]

	Olofsson, Juhász, Henning, et al. (2012) [http://arxiv.org/abs/1204.2374]

	Bovy, Rix, Liu, et al. (2012) [http://arxiv.org/abs/1111.1724]

	Lang & Hogg (2012) [http://arxiv.org/abs/1103.6038]

	Bovy, Rix, Hogg, et al. (2012) [http://arxiv.org/abs/1202.2819]

	Bussmann, Gurwell, Fu, et al. (2012) [http://arxiv.org/abs/1207.2724]

	Brammer, Sánchez-Janssen, Labbé, et al. (2012) [http://arxiv.org/abs/1207.3795]

	Brown, Rosenfeld, Andrews, et al. (2012) [http://arxiv.org/abs/1209.1641]

	Bovy, Allende Prieto, Beers, et al. (2012) [http://arxiv.org/abs/1209.0759]

	Roškar, Debattista, & Loebman (2012) [http://arxiv.org/abs/1211.1982]

	Crossfield, Barman, Hansen, et al. (2012) [http://arxiv.org/abs/1210.4836]

	Morton (2012) [http://arxiv.org/abs/1206.1568]

	Monnier, Che, Zhao, et al. (2012) [http://arxiv.org/abs/1211.6055]

	Huppenkothen, Watts, Uttley, et al. (2012) [http://arxiv.org/abs/1212.1011]

	Cieza, Olofsson, Harvey, et al. (2013) [http://arxiv.org/abs/1211.4510]

	Weisz, Fouesneau, Hogg, et al. (2013) [http://arxiv.org/abs/1211.6105]

	Reis, Miller, Reynolds, et al. (2013) [http://arxiv.org/abs/1208.3277]

	Sanders, & Fabian (2013) [http://arxiv.org/abs/1212.1259]

	Akeret, Seehars, Amara, et al. (2012) [http://arxiv.org/abs/1212.1721]

	Riechers, Bradford, Clements, et al. (2013) [http://arxiv.org/abs/1304.4256]

	Kamruddin & Dexter (2013) [http://arxiv.org/abs/1306.3226]

	Sparre et al. (2013) [http://arxiv.org/abs/1309.2940]

	Price-Whelan & Johnston (2013) [http://arxiv.org/abs/1308.2670]

	Watkins, van de Ven, den Brok, et al. (2013) [http://arxiv.org/abs/1308.4789]

	Price-Whelan et al. (2013) [http://arxiv.org/abs/1311.3683]

	Guillochon, Manukian & Ramirez-Ruiz (2013) [http://arxiv.org/abs/1304.6397]

	Guillochon, Loeb, MacLeod & Ramirez-Ruiz (2014) [http://arxiv.org/abs/1401.2990]

	Cargile, James, Pepper, et al. (2014) [http://arxiv.org/abs/1312.3946]

	Keller et al. (2014) [http://arxiv.org/abs/1402.1517]

	Ransom et al. (2014) [http://arxiv.org/abs/1401.0535]

	Pérez et al. (2014) [http://arxiv.org/abs/1402.0832]

	Oliver et al. (2014) [http://dx.doi.org/10.1063/1.4866813]

	Narbutis et al. (2014) [http://arxiv.org/abs/1410.2514]

	Narbutis et al. (2014) [http://arxiv.org/abs/1410.2521]

	Kirichenko et al. (2015) [http://arxiv.org/abs/1501.04594]

Please let us know if your work should be included
in this list or fork the repository [https://github.com/dfm/emcee] and add
it yourself.

 _static/line/line-max-likelihood.png

_static/line/line-mcmc.png
10

_static/ajax-loader.gif

_images/line-time.png
100 200 300

step number

_static/line/line-time.png

_images/line-triangle.png
D P PO VP>
O xg QQQ CER
s b

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/line-least-squares.png

_images/line-max-likelihood.png

_images/line-data.png

_images/line-mcmc.png
10

_static/favicon.png

_static/minus.png

_static/plus.png

_static/file.png

_static/logo-sidebar.png
emcee

he MCMC Hammer

_static/up.png

_static/line/line-data.png

_static/up-pressed.png

_static/line/line-least-squares.png

