

    
      
          
            
  
emcee


Seriously Kick-Ass MCMC

emcee is an MIT licensed pure-Python implementation of Goodman & Weare’s
Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler [http://msp.berkeley.edu/camcos/2010/5-1/p04.xhtml] and these pages will
show you how to use it.

This documentation won’t teach you too much about MCMC but there are a lot
of resources available for that (try this one [http://www.inference.phy.cam.ac.uk/mackay/itila/book.html]).
We also published a paper [http://arxiv.org/abs/1202.3665] explaining
the emcee algorithm and implementation in detail.

emcee has been used in quite a few projects in the astrophysical literature and it is being actively developed on GitHub [https://github.com/dfm/emcee].




Basic Usage

If you wanted to draw samples from a 10 dimensional Gaussian, you would do
something like:

import numpy as np
import emcee

def lnprob(x, ivar):
    return -0.5 * np.sum(ivar * x ** 2)

ndim, nwalkers = 10, 100
ivar = 1. / np.random.rand(ndim)
p0 = [np.random.rand(ndim) for i in range(nwalkers)]

sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=[ivar])
sampler.run_mcmc(p0, 1000)





A more complete example is available in the quickstart documentation.
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License & Attribution

Copyright 2010-2016 Dan Foreman-Mackey and contributors.

emcee is free software made available under the MIT License. For details
see LICENSE.

If you make use of emcee in your work, please cite our paper
(arXiv [http://arxiv.org/abs/1202.3665],
ADS [http://adsabs.harvard.edu/abs/2013PASP..125..306F],
BibTeX [http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2013PASP..125..306F&data_type=BIBTEX])
and consider adding your paper to the Testimonials list.




Changelog


2.2.0 (2016-07-12)


	Improved autocorrelation time computation.


	Numpy compatibility issues.


	Fixed deprecated integer division behavior in PTSampler.







2.1.0 (2014-05-22)


	Removing dependence on acor extension.


	Added arguments to PTSampler function.


	Added automatic load-balancing for MPI runs.


	Added custom load-balancing for MPI and multiprocessing.


	New default multiprocessing pool that supports ^C.







2.0.0 (2013-11-17)


	Re-licensed under the MIT license!


	Clearer less verbose documentation.


	Added checks for parameters becoming infinite or NaN.


	Added checks for log-probability becoming NaN.


	Improved parallelization and various other tweaks in PTSampler.







1.2.0 (2013-01-30)


	Added a parallel tempering sampler PTSampler.


	Added instructions and utilities for using emcee with MPI.


	Added flatlnprobability property to the EnsembleSampler object
to be consistent with the flatchain property.


	Updated document for publication in PASP.


	Various bug fixes.







1.1.3 (2012-11-22)


	Made the packaging system more robust even when numpy is not installed.







1.1.2 (2012-08-06)


	Another bug fix related to metadata blobs: the shape of the final blobs
object was incorrect and all of the entries would generally be identical
because we needed to copy the list that was appended at each step. Thanks
goes to Jacqueline Chen (MIT) for catching this problem.







1.1.1 (2012-07-30)


	Fixed bug related to metadata blobs. The sample function was yielding
the blobs object even when it wasn’t expected.







1.1.0 (2012-07-28)


	Allow the lnprobfn to return arbitrary “blobs” of data as well as the
log-probability.


	Python 3 compatible (thanks Alex Conley)!


	Various speed ups and clean ups in the core code base.


	New documentation with better examples and more discussion.







1.0.1 (2012-03-31)


	Fixed transpose bug in the usage of acor in EnsembleSampler.







1.0.0 (2012-02-15)


	Initial release.












          

      

      

    

  

    
      
          
            
  
Installation

Since emcee is a pure Python module, it should be pretty easy to install.
All you’ll need numpy [http://numpy.scipy.org/]. There are a bunch of
different ways to install and I’ll mention a few below but by far the best
is to install into a virtual environment [http://www.virtualenv.org/]
using pip [http://www.pip-installer.org/].


Using pip

The easiest way to install the most recent stable version of emcee is
with pip [http://www.pip-installer.org/]:

$ pip install emcee





You might need to run this using sudo depending on your Python
installation. You can also use easy_install:

$ easy_install emcee





but pip is probably better.




From source

Alternatively, you can get the source by downloading a
tarball [https://github.com/dfm/emcee/tarball/master]:

$ curl -OL https://github.com/dfm/emcee/tarball/master





or zip archive [https://github.com/dfm/emcee/zipball/master]:

$ curl -OL https://github.com/dfm/emcee/zipball/master





Once you’ve downloaded and unpacked the source, you can navigate into the
root source directory and run:

$ python setup.py install








Bleeding edge development version

emcee is being developed actively on GitHub [https://github.com/dfm/emcee] so if you feel like hacking, you can clone
the source repository

git clone https://github.com/dfm/emcee.git





or fork the repository [https://github.com/dfm/emcee].




Test the installation

To make sure that the installation went alright, you can run some unit tests
by running:

python -c 'import emcee; emcee.test()'





or, if you have nose [http://nose.readthedocs.org/]:

nosetests





This might take a few minutes but you shouldn’t get any errors if all went
as planned.







          

      

      

    

  

    
      
          
            
  
Quickstart

The easiest way to get started with using emcee is to use it for a
project. To get you started, here’s an annotated, fully-functional
example that demonstrates a standard usage pattern.


How to sample a multi-dimensional Gaussian

We’re going to demonstrate how you might draw samples from the multivariate
Gaussian density given by:


\[p(\vec{x}) \propto \exp \left [ - \frac{1}{2} (\vec{x} -
    \vec{\mu})^\mathrm{T} \, \Sigma ^{-1} \, (\vec{x} - \vec{\mu})
    \right ]\]

where \(\vec{\mu}\) is an N-dimensional vector position of
the mean of the density and \(\Sigma\) is the square N-by-N
covariance matrix.

The first thing that we need to do is import the necessary
modules:

import numpy as np
import emcee





Then, we’ll code up a Python function that returns the density
\(p(\vec{x})\) for specific values of \(\vec{x}\),
\(\vec{\mu}\) and \(\Sigma^{-1}\). In fact,
emcee actually requires the logarithm of p. We’ll call it lnprob:

def lnprob(x, mu, icov):
    diff = x-mu
    return -np.dot(diff,np.dot(icov,diff))/2.0





It is important that the first argument of the probability function is
the position of a single walker (a N dimensional
numpy array). The following arguments are going to be constant every
time the function is called and the values come from the args parameter
of our EnsembleSampler that we’ll see soon.

Now, we’ll set up the specific values of those “hyperparameters” in 50
dimensions:

ndim = 50

means = np.random.rand(ndim)

cov = 0.5 - np.random.rand(ndim ** 2).reshape((ndim, ndim))
cov = np.triu(cov)
cov += cov.T - np.diag(cov.diagonal())
cov = np.dot(cov,cov)





and where cov is \(\Sigma\). Before going on, let’s
compute the inverse of cov because that’s what we need in our
probability function:

icov = np.linalg.inv(cov)





It’s probably overkill this time but how about we use 250 walkers? Before we go on, we need to guess a starting point for each
of the 250 walkers. This position will be a 50-dimensional vector so the
initial guess should be a 250-by-50 array—or a list of 250 arrays that
each have 50 elements. It’s not a very good guess but we’ll just guess a
random number between 0 and 1 for each component:

nwalkers = 250
p0 = np.random.rand(ndim * nwalkers).reshape((nwalkers, ndim))





Now that we’ve gotten past all the bookkeeping stuff, we can move on to
the fun stuff. The main interface provided by emcee is the
EnsembleSampler object so let’s get ourselves one of those:

sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=[means, icov])





Remember how our function lnprob required two extra arguments when it
was called? By setting up our sampler with the args argument, we’re
saying that the probability function should be called as:

lnprob(p, means, icov)





where p is the position of a single walker. If we didn’t provide any
args parameter, the calling sequence would be lnprob(p) instead.

It’s generally a good idea to run a few “burn-in” steps in your MCMC
chain to let the walkers explore the parameter space a bit and get
settled into the maximum of the density. We’ll run a burn-in of 100
steps (yep, I just made that number up… it’s hard to really know
how many steps of burn-in you’ll need before you start) starting from
our initial guess p0:

pos, prob, state = sampler.run_mcmc(p0, 100)
sampler.reset()





You’ll notice that I saved the final position of the walkers (after the
100 steps) to a variable called pos. You can check out what will be
contained in the other output variables by looking at the documentation for
the EnsembleSampler.run_mcmc() function. The call to the
EnsembleSampler.reset() method clears all of the important bookkeeping
parameters in the sampler so that we get a fresh start. It also clears the
current positions of the walkers so it’s a good thing that we saved them
first.

Now, we can do our production run of 1000 steps (again, this is probably
overkill… it’s generally very silly to take way more samples than you
need to but never mind that for now):

sampler.run_mcmc(pos, 1000)





The sampler now has a property EnsembleSampler.chain that is a
numpy array with the shape (250, 1000, 50). Take note of that
shape and make sure that you know where each of those numbers come from.
A much more useful object is the EnsembleSampler.flatchain which
has the shape (250000, 50) and contains all the samples reshaped into
a flat list. You can see now that we now have 250 000 unbiased samples of
the density \(p(\vec{x})\). You can make histograms of these
samples to get an estimate of the density that you were sampling:

import matplotlib.pyplot as pl

for i in range(ndim):
    pl.figure()
    pl.hist(sampler.flatchain[:,i], 100, color="k", histtype="step")
    pl.title("Dimension {0:d}".format(i))

pl.show()





Another good test of whether or not the sampling went well is to check
the mean acceptance fraction of the ensemble using the
EnsembleSampler.acceptance_fraction() property:

print("Mean acceptance fraction: {0:.3f}"
                .format(np.mean(sampler.acceptance_fraction)))





This number should be between approximately 0.25 and 0.5 if everything
went as planned.

Well, that’s it for this example. You’ll find the full, unadulterated
sample code for this demo here [https://github.com/dfm/emcee/blob/master/examples/quickstart.py].







          

      

      

    

  

    
      
          
            
  
Example: Fitting a Model to Data

If you’re reading this right now then you’re probably interested in using
emcee to fit a model to some noisy data.
On this page, I’ll demonstrate how you might do this in the simplest
non-trivial model that I could think of: fitting a line to data when you
don’t believe the error bars on your data.
The interested reader should check out Hogg, Bovy & Lang (2010) [http://arxiv.org/abs/1008.4686] for a much more complete discussion of how
to fit a line to data in The Real World™ and why MCMC might come in handy.

The full source code for this example is available in the GitHub repository [https://github.com/dfm/emcee/blob/master/examples/line.py].


The generative probabilistic model

When you approach a new problem, the first step is generally to write down the
likelihood function (the probability of a dataset given the model
parameters).
This is equivalent to describing the generative procedure for the data.
In this case, we’re going to consider a linear model where the quoted
uncertainties are underestimated by a constant fractional amount.
You can generate a synthetic dataset from this model:

import numpy as np

# Choose the "true" parameters.
m_true = -0.9594
b_true = 4.294
f_true = 0.534

# Generate some synthetic data from the model.
N = 50
x = np.sort(10*np.random.rand(N))
yerr = 0.1+0.5*np.random.rand(N)
y = m_true*x+b_true
y += np.abs(f_true*y) * np.random.randn(N)
y += yerr * np.random.randn(N)





This synthetic dataset (with the underestimated error bars) will look
something like:

[image: ../_images/line-data.png]
The true model is shown as the thick grey line and the effect of the
underestimated uncertainties is obvious when you look at this figure.
The standard way to fit a line to these data (assuming independent Gaussian
error bars) is linear least squares.
Linear least squares is appealing because solving for the parameters—and
their associated uncertainties—is simply a linear algebraic operation.
Following the notation in Hogg, Bovy & Lang (2010) [http://arxiv.org/abs/1008.4686], the linear least squares solution to these
data is

A = np.vstack((np.ones_like(x), x)).T
C = np.diag(yerr * yerr)
cov = np.linalg.inv(np.dot(A.T, np.linalg.solve(C, A)))
b_ls, m_ls = np.dot(cov, np.dot(A.T, np.linalg.solve(C, y)))





For the dataset generated above, the result is


\[m = -1.104\pm 0.016 \quad \mathrm{and} \quad
b = 5.441 ± 0.091\]

plotted below as a dashed line:

[image: ../_images/line-least-squares.png]
This isn’t an unreasonable result but the uncertainties on the slope and
intercept seem a little small (because of the small error bars on most of the
data points).




Maximum likelihood estimation

The least squares solution found in the previous section is the maximum
likelihood result for a model where the error bars are assumed correct,
Gaussian and independent.
We know, of course, that this isn’t the right model.
Unfortunately, there isn’t a generalization of least squares that supports a
model like the one that we know to be true.
Instead, we need to write down the likelihood function and numerically
optimize it.
In mathematical notation, the correct likelihood function is:


\[\ln\,p(y\,|\,x,\sigma,m,b,f) =
-\frac{1}{2} \sum_n \left[
    \frac{(y_n-m\,x_n-b)^2}{s_n^2}
    + \ln \left ( 2\pi\,s_n^2 \right )
\right]\]

where


\[s_n^2 = \sigma_n^2+f^2\,(m\,x_n+b)^2 \quad .\]

This likelihood function is simply a Gaussian where the variance is
underestimated by some fractional amount:  f.
In Python, you would code this up as:

def lnlike(theta, x, y, yerr):
    m, b, lnf = theta
    model = m * x + b
    inv_sigma2 = 1.0/(yerr**2 + model**2*np.exp(2*lnf))
    return -0.5*(np.sum((y-model)**2*inv_sigma2 - np.log(inv_sigma2)))





In this code snippet, you’ll notice that I’m using the logarithm of f
instead of f itself for reasons that will become clear in the next section.
For now, it should at least be clear that this isn’t a bad idea because it
will force f to be always positive.
A good way of finding this numerical optimum of this likelihood function is to
use the scipy.optimize [http://docs.scipy.org/doc/scipy/reference/optimize.html] module:

import scipy.optimize as op
nll = lambda *args: -lnlike(*args)
result = op.minimize(nll, [m_true, b_true, np.log(f_true)], args=(x, y, yerr))
m_ml, b_ml, lnf_ml = result["x"]





It’s worth noting that the optimize module minimizes functions whereas we
would like to maximize the likelihood.
This goal is equivalent to minimizing the negative likelihood (or in this
case, the negative log likelihood).
The maximum likelihood result is plotted as a solid black line—compared to
the true model (grey line) and linear least squares (dashed line)—in the
following figure:

[image: ../_images/line-max-likelihood.png]
That looks better!
The values found by this optimization are:


\[m = -1.003 \,, \quad
b = 4.528 \quad
\mathrm{and} \quad
f = 0.454 \quad .\]

The problem now: how do we estimate the uncertainties on m and b?
What’s more, we probably don’t really care too much about the value of f but
it seems worthwhile to propagate any uncertainties about its value to our
final estimates of m and b.
This is where MCMC comes in.




Marginalization & uncertainty estimation

This isn’t the place to get into the details of why you might want to use MCMC
in your research but it is worth commenting that a common reason is that you
would like to marginalize over some “nuisance parameters” and find an estimate
of the posterior probability function (the distribution of parameters that is
consistent with your dataset) for others.
MCMC lets you do both of these things in one fell swoop!
You need to start by writing down the posterior probability function (up to a
constant):


\[p (m,b,f\,|\,x,y,\sigma) \propto p(m,b,f)\,p(y\,|\,x,\sigma,m,b,f) \quad .\]

We have already, in the previous section, written down the likelihood function


\[p(y\,|\,x,\sigma,m,b,f)\]

so the missing component is the “prior” function


\[p(m,b,f) \quad .\]

This function encodes any previous knowledge that we have about the
parameters: results from other experiments, physically acceptable ranges, etc.
It is necessary that you write down priors if you’re going to use MCMC because
all that MCMC does is draw samples from a probability distribution and you
want that to be a probability distribution for your parameters.
This is important: you cannot draw parameter samples from your likelihood
function.
This is because a likelihood function is a probability distribution over
datasets so, conditioned on model parameters, you can draw representative
datasets (as demonstrated at the beginning of this exercise) but you cannot
draw parameter samples.

In this example, we’ll use uniform (so-called “uninformative”) priors on m,
b and the logarithm of f.
For example, we’ll use the following conservative prior on m:


\[\begin{split}p(m) = \left \{\begin{array}{ll}
    1 / 5.5 \,, & \mbox{if}\,-5 < m < 1/2 \\
    0 \,, & \mbox{otherwise}
\end{array}
\right .\end{split}\]

In code, the log-prior is (up to a constant):

def lnprior(theta):
    m, b, lnf = theta
    if -5.0 < m < 0.5 and 0.0 < b < 10.0 and -10.0 < lnf < 1.0:
        return 0.0
    return -np.inf





Then, combining this with the definition of lnlike from above, the full
log-probability function is:

def lnprob(theta, x, y, yerr):
    lp = lnprior(theta)
    if not np.isfinite(lp):
        return -np.inf
    return lp + lnlike(theta, x, y, yerr)





After all this setup, it’s easy to sample this distribution using emcee.
We’ll start by initializing the walkers in a tiny Gaussian ball around the
maximum likelihood result (I’ve found that this tends to be a pretty good
initialization in most cases):

ndim, nwalkers = 3, 100
pos = [result["x"] + 1e-4*np.random.randn(ndim) for i in range(nwalkers)]





Then, we can set up the sampler:

import emcee
sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=(x, y, yerr))





and run the MCMC for 500 steps starting from the tiny ball defined above:

sampler.run_mcmc(pos, 500)





Let’s take a look at what the sampler has done.
The best way to see this is to look at the time series of the parameters in
the chain.
The sampler object now has an attribute called chain that is an array
with the shape (100, 500, 3) giving the parameter values for each walker
at each step in the chain.
The figure below shows the positions of each walker as a function of the
number of steps in the chain:

[image: ../_images/line-time.png]
The true values of the parameters are indicated as grey lines on top of the
samples.
As mentioned above, the walkers start in small distributions around the
maximum likelihood values and then they quickly wander and start exploring the
full posterior distribution.
In fact, after fewer than 50 steps, the samples seem pretty well “burnt-in”.
That is a hard statement to make quantitatively but for now, we’ll just accept
it and discard the initial 50 steps and flatten the chain so that we have a
flat list of samples:

samples = sampler.chain[:, 50:, :].reshape((-1, ndim))








Results

Now that we have this list of samples, let’s make one of the most useful plots
you can make with your MCMC results: a corner plot.
You’ll need the corner.py module [https://github.com/dfm/corner.py] but
once you have it, generating a corner plot is as simple as:

import corner
fig = corner.corner(samples, labels=["$m$", "$b$", "$\ln\,f$"],
                      truths=[m_true, b_true, np.log(f_true)])
fig.savefig("triangle.png")





and you should get something like the following:

[image: ../_images/line-triangle.png]
The corner plot shows all the one and two dimensional projections of the
posterior probability distributions of your parameters.
This is useful because it quickly demonstrates all of the covariances between
parameters.
Also, the way that you find the marginalized distribution for a parameter or
set of parameters using the results of the MCMC chain is to project the
samples into that plane and then make an N-dimensional histogram.
That means that the corner plot shows the marginalized distribution for each
parameter independently in the histograms along the diagonal and then the
marginalized two dimensional distributions in the other panels.

Another diagnostic plot is the projection of your results into the space of
the observed data.
To do this, you can choose a few (say 100 in this case) samples from the chain
and plot them on top of the data points:

import matplotlib.pyplot as pl
xl = np.array([0, 10])
for m, b, lnf in samples[np.random.randint(len(samples), size=100)]:
    pl.plot(xl, m*xl+b, color="k", alpha=0.1)
pl.plot(xl, m_true*xl+b_true, color="r", lw=2, alpha=0.8)
pl.errorbar(x, y, yerr=yerr, fmt=".k")





which should give you something like:

[image: ../_images/line-mcmc.png]
This leaves us with one question: which numbers should go in the abstract?
There are a few different options for this but my favorite is to quote the
uncertainties based on the 16th, 50th, and 84th percentiles of the samples in
the marginalized distributions.
To compute these numbers for this example, you would run:

samples[:, 2] = np.exp(samples[:, 2])
m_mcmc, b_mcmc, f_mcmc = map(lambda v: (v[1], v[2]-v[1], v[1]-v[0]),
                             zip(*np.percentile(samples, [16, 50, 84],
                                                axis=0)))





giving you the results:


\[m = -1.009 ^{+0.077} _{-0.075} \,, \quad
b = 4.556 ^{+0.346} _{-0.353} \quad \mathrm{and} \quad
f = 0.463 ^{+0.079} _{-0.063}\]

which isn’t half bad given the true values:


\[m_\mathrm{true} = -0.9594 \,, \quad
b_\mathrm{true} = 4.294 \quad \mathrm{and} \quad
f_\mathrm{true} = 0.534 \quad.\]







          

      

      

    

  

    
      
          
            
  
Advanced Patterns

emcee is generally pretty simple but it has a few key features that make
the usage easier in real problems. Here are a few examples of things that
you might find useful.


Incrementally saving progress

It is often useful to incrementally save the state of the chain to a file.
This makes it easier to monitor the chain’s progress and it makes things a
little less disastrous if your code/computer crashes somewhere in the middle
of an expensive MCMC run. If you just want to append the walker positions to
the end of a file, you could do something like:

f = open("chain.dat", "w")
f.close()

for result in sampler.sample(pos0, iterations=500, storechain=False):
    position = result[0]
    f = open("chain.dat", "a")
    for k in range(position.shape[0]):
        f.write("{0:4d} {1:s}\n".format(k, " ".join(position[k])))
    f.close()








Multiprocessing

In principle, running emcee in parallel is as simple instantiating an
EnsembleSampler object with the threads argument set to an
integer greater than 1:

sampler = emcee.EnsembleSampler(nwalkers, ndim, lnpostfn, threads=15)





In practice, the parallelization is implemented using the built in Python
multiprocessing [http://docs.python.org/library/multiprocessing.html]
module. With this comes a few constraints. In particular, both lnpostfn
and args must be pickleable [http://docs.python.org/library/pickle.html#what-can-be-pickled-and-unpickled].
The exceptions thrown while using multiprocessing can be quite cryptic
and even though we’ve tried to make this feature as user-friendly as possible,
it can sometimes cause some headaches. One useful debugging tactic is to
try running with 1 thread if your processes start to crash. This will
generally provide much more illuminating error messages than in the parallel
case. Note that the parallelized EnsembleSampler object is not
pickleable. Therefore, if it (or an object that contains it) is passed to
lnpostfn when multiprocessing is turned on, the code will fail.

It is also important to note that the multiprocessing module works by
spawning a large number of new python processes and running the code in
isolation within those processes. This means that there is a significant
amount of overhead involved at each step of the parallelization process.
With this in mind, it is not surprising that running a simple problem like
the quickstart example in parallel will run much slower
than the equivalent serial code. If your log-probability function takes
a significant amount of time (> 1 second or so) to compute then using the
parallel sampler actually provides significant speed gains.




Arbitrary metadata blobs

Added in version 1.1.0

Imagine that your log-probability function involves an extremely
computationally expensive numerical simulation starting from initial
conditions parameterized by the position of the walker in parameter space.
Then you have to compare the results of your simulation by projecting into
data space (predicting you data) and computing something like a chi-squared
scalar in this space. After you run MCMC, you might want to visualize
the draws from your probability function in data space by over-plotting
samples on your data points. It is obviously unreasonable to recompute
all the simulations for all the initial conditions that you want to display
as a part of your post-processing—especially since you already computed all
of them before! Instead, it would be ideal to be able to store realizations
associated with each step in the MCMC and then just display those after the
fact. This is possible using the “arbitrary blob” pattern.

To use blobs, you just need to modify your log-probability function to
return a second argument (this can be any arbitrary Python object). Then,
the sampler object will have an attribute (called
EnsembleSampler.blobs) that is a list (of length niterations)
of lists (of length nwalkers) containing all the accepted blobs
associated with the walker positions in EnsembleSampler.chain.

As an absolutely trivial example, let’s say that we wanted to store the
sum of cubes of the input parameters as a string at each position in the
chain. To do this we could simply sample a function like:

def lnprobfn(p):
    return -0.5 * np.sum(p ** 2), str(np.sum(p ** 3))





It is important to note that by returning two values from our log-probability
function, we also change the output of EnsembleSampler.sample() and
EnsembleSampler.run_mcmc() to return 4 values (position, probability,
random number generator state and blobs) instead of just the first three.




Using MPI to distribute the computations

Added in version 1.2.0

The standard implementation of emcee relies on the multiprocessing
module to parallelize tasks. This works well on a single machine with
multiple cores but it is sometimes useful to distribute the computation
across a larger cluster. To do this, we need to do something a little bit
more sophisticated using the mpi4py module [http://mpi4py.scipy.org/docs/usrman/index.html]. Below, we’ll implement
an example similar to the quickstart using MPI but
first you’ll need to install mpi4py [http://mpi4py.scipy.org/docs/usrman/install.html].

The utils.MPIPool object provides most of the needed functionality
so we’ll start by importing that and the other needed modules:

import sys
import numpy as np
import emcee
from emcee.utils import MPIPool





This time, we’ll just sample a simple isotropic Gaussian (remember that the
emcee algorithm doesn’t care about covariances between parameters
because it is affine-invariant):

ndim = 50
nwalkers = 250
p0 = [np.random.rand(ndim) for i in xrange(nwalkers)]

def lnprob(x):
    return -0.5 * np.sum(x ** 2)





Now, this is where things start to change:

pool = MPIPool()
if not pool.is_master():
    pool.wait()
    sys.exit(0)





First, we’re initializing the pool object and then—if the process isn’t
running as master—we wait for instructions and then exit. Then, we can
set up the sampler providing this pool object to do the parallelization:

sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, pool=pool)





and then run and analyse as usual. The key here is that only the master
chain should actually directly interact with the sampler and the other
processes should only wait for instructions.

Note: don’t forget to close the pool if you don’t want the processes to
hang forever:

pool.close()





The full source code for this example is available on Github [https://github.com/dfm/emcee/blob/master/examples/mpi.py].

If we save this script to the file mpi.py, we can then run this example
with the command:

mpirun -np 2 python mpi.py





for local testing.




Loadbalancing in parallel runs

Added in version 2.1.0

When emcee is being used in a multi-processing mode (multiprocessing or
mpi4py), the parameters need to distributed evenly over all the available
cores. emcee uses a map function to distribute the jobs over the available
cores. In case of multiprocessing, the map function is in-built and
dynamically schedules the tasks. In order to get a similar dynamic
scheduling in map when using utils.MPIPool , use the following
invocation:

pool = MPIPool(loadbalance=True)





By default, loadbalance is set to False. If your jobs have a lot of
variance in run-time, then setting the loadbalance option will improve
the overall run-time.

If your problem is such that the runtime for each invocation of the
log-probability function scales with one/some of the parameters, then you can
improve load-balancing even further. By sorting the jobs in decreasing order
of (expected) run-time, the longest jobs get run simultaneously and you only
have the wait for the duration of the longest job. In the following example,
the first parameter strongly determines the run-time – larger the first
parameter, the longer the runtime. The sort_on_runtime returns the
re-ordered list and the corresponding index.

def sort_on_runtime(pos):
    p = np.atleast_2d(p)
    idx = np.argsort(p[:, 0])[::-1]
    return p[idx], idx





In order to use this function, you will have to instantiate an
EnsembleSampler object with:

sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, pool=pool,
                                runtime_sortingfn=sort_on_runtime)





Such a sort_on_runtime can be applied to both multiprocessing
and mpi4py invocations for emcee. You can see a benchmarking
routine using the mpi4py module on Github [https://github.com/dfm/emcee/blob/master/examples/loadbalance.py].







          

      

      

    

  

    
      
          
            
  
Parallel-Tempering Ensemble MCMC

Added in version 1.2.0

When your posterior is multi-modal or otherwise hard to sample with a
standard MCMC, a good option to try is parallel-tempered MCMC (PTMCMC) [http://en.wikipedia.org/wiki/Parallel_tempering].
PTMCMC runs multiple MCMC’s at different temperatures, \(T\).  Each MCMC
samples from a modified posterior, given by


\[\pi_T(x) = \left[ l(x) \right]^{\frac{1}{T}} p(x)\]

As \(T \to \infty\), the posterior becomes the prior, which is
hopefully easy to sample.  If the likelihood is a Gaussian with
standard deviation \(\sigma\), then the tempered likelihood is
proportional to a Gaussian with standard deviation \(\sigma
\sqrt{T}\).

Periodically during the run, the different temperatures swap members
of their ensemble in a way that preserves detailed balance.  The hot
chains can more easily explore parameter space because the likelihood
is flatter and broader, while the cold chains do a good job of
exploring the peaks of the likelihood.  This can dramatically
improve convergence if your likelihood function has many
well-separated modes.


How To Sample a Multi-Modal Gaussian

Suppose we want to sample from the posterior given by


\[\pi(\vec{x}) \propto \exp\left[ - \frac{1}{2}
     \left( \vec{x} - \vec{\mu}_1 \right)^T \Sigma^{-1}_1
     \left( \vec{x} - \vec{\mu}_1 \right) \right]
     + \exp\left[ -\frac{1}{2} \left( \vec{x} - \vec{\mu}_2 \right)^T
       \Sigma^{-1}_2 \left( \vec{x} - \vec{\mu}_2 \right) \right]\]

If the modes \(\mu_{1,2}\) are well-separated with respect to the
scale of \(\Sigma_{1,2}\), then this distribution will be hard to
sample with the EnsembleSampler.  Here is how we would sample
from it using the PTSampler.

First, some preliminaries:

import numpy as np
from emcee import PTSampler





Define the means and standard deviations of our multi-modal likelihood:

# mu1 = [1, 1], mu2 = [-1, -1]
mu1 = np.ones(2)
mu2 = -np.ones(2)

# Width of 0.1 in each dimension
sigma1inv = np.diag([100.0, 100.0])
sigma2inv = np.diag([100.0, 100.0])

def logl(x):
    dx1 = x - mu1
    dx2 = x - mu2

    return np.logaddexp(-np.dot(dx1, np.dot(sigma1inv, dx1))/2.0,
                        -np.dot(dx2, np.dot(sigma2inv, dx2))/2.0)

# Use a flat prior
def logp(x):
    return 0.0





Now we can construct a sampler object that will drive the PTMCMC;
arbitrarily, we choose to use 20 temperatures (the default is for each
temperature to increase by a factor of \(\sqrt{2}\), so the
highest temperature will be \(T = 1024\), resulting in an
effective \(\sigma_T = 32 \sigma = 3.2\), which is about the
separation of our modes).  Let’s use 100 walkers in the ensemble at
each temperature:

ntemps = 20
nwalkers = 100
ndim = 2

sampler=PTSampler(ntemps, nwalkers, ndim, logl, logp)





Making the sampling multi-threaded is as simple as adding the
threads=Nthreads argument to PTSampler.  We could have
modified the temperature ladder using the betas optional argument
(which should be an array of \(\beta \equiv 1/T\) values).  The
pool argument also allows to specify our own pool of worker
threads if we wanted fine-grained control over the parallelism.

First, we run the sampler for 1000 burn-in iterations:

p0 = np.random.uniform(low=-1.0, high=1.0, size=(ntemps, nwalkers, ndim))
for p, lnprob, lnlike in sampler.sample(p0, iterations=1000):
    pass
sampler.reset()





Now we sample for 10000 iterations, recording every 10th sample:

for p, lnprob, lnlike in sampler.sample(p, lnprob0=lnprob,
                                           lnlike0=lnlike,
                                           iterations=10000, thin=10):
    pass





The resulting samples (1000 of them) are stored as the
sampler.chain property:

assert sampler.chain.shape == (ntemps, nwalkers, 1000, ndim)

# Chain has shape (ntemps, nwalkers, nsteps, ndim)
# Zero temperature mean:
mu0 = np.mean(np.mean(sampler.chain[0,...], axis=0), axis=0)

# Longest autocorrelation length (over any temperature)
max_acl = np.max(sampler.acor)

# etc








Implementation Notes

For a description of the parallel-tempering algorithm, see, e.g. Earl
& Deem (2010), Phys Chem Chem Phys, 7, 23, 3910 [http://adsabs.harvard.edu/abs/2005PCCP....7.3910E]. The algorithm
has some tunable parameters:


	Temperature Ladder

	The choice of temperature for the chains will strongly influence
the rate of convergence of the sampling.  By default, the
PTSampler class uses an exponential ladder, with each
temperature increasing by a factor of \(\sqrt{2}\).  The user
can supply their own ladder using the beta optional argument
in the constructor.



	Rate of Temperature Swaps

	The rate at which temperature swaps are proposed can, to a lesser
extent, also influence the rate of convergence of the sampling.
The goal is to make sure that good positions found by the high
temperatures can propogate to the lower temperatures, but still
ensure that the high-temperatures do not lose all memory of good
locations.  Here we choose to implement one temperature swap
proposal per walker per rung on the temperature ladder after each
ensemble update.  This is not user-tunable, but seems to work well
in practice.





The args optional argument is not available in the
PTSampler constructor; use a custom class with a __call__
method if you need to pass arguments to the lnlike or lnprior
functions and do not want to use a global variable.

The thermodynamic_integration_log_evidence uses thermodynamic
integration (see, e.g., Goggans & Chi (2004), AIP Conf Proc, 707, 59 [http://dx.doi.org/10.1063/1.1751356]) to estimate the evidence
integral.  Define the evidence as a function of inverse temperature:


\[Z(\beta) \equiv \int dx\, l^\beta(x) p(x)\]

We want to compute \(Z(1)\).  \(Z\) satisfies the following
differential equation


\[\frac{d \ln Z}{d\beta}
    = \frac{1}{Z(\beta)} \int dx\, \ln l(x) l^\beta(x) p(x)
    = \left \langle \ln l \right\rangle_\beta\]

where \(\left\langle \ldots \right\rangle_\beta\) is the average
of a quantity over the posterior at temperature \(T = 1/\beta\).
Integrating (note that \(Z(0) = 1\) because the prior is
normalized), we have


\[\ln Z(1) = \int_0^1 d\beta \left \langle \ln l \right\rangle_\beta\]

This quantity can be estimated from a PTMCMC by computing the average
\(\ln l\) within each chain and applying a quadrature formula to
estimate the integral.







          

      

      

    

  

    
      
          
            
  
FAQ

The not-so-frequently asked questions that still have useful answers


What are “walkers”?

Walkers are the members of the ensemble. They are almost like separate
Metropolis-Hastings chains but, of course, the proposal distribution for
a given walker depends on the positions of all the other walkers in the
ensemble. See Goodman & Weare (2010) [http://msp.berkeley.edu/camcos/2010/5-1/p04.xhtml] for more details.




How should I initialize the walkers?

The best technique seems to be to start in a small ball around the a priori
preferred position. Don’t worry, the walkers quickly branch out and explore
the rest of the space.




Wrapping C++ code

There are numerous ways to do it, see
the python wiki [https://wiki.python.org/moin/IntegratingPythonWithOtherLanguages#C.2FC.2B-.2B-].

Extra care has to be taken if mpi support is needed as the mpi4py module used by
emcee depends on the pickle module to send a function call to different
processors/cores.

A minimal extension of the mpi.py example in which the target density is coded
in C++ and wrapped with the swig library [http://swig.org/] is shown in this
gist [https://gist.github.com/fredRos/7122649]. It also demonstrates the hacks
needed to get the pickling to work.




Parameter limits

In order to confine the walkers to a finite volume of the parameter space, have
your function return negative infinity outside of the volume corresponding to
the logarithm of 0 prior probability using:

return -numpy.inf





Note: if your function is written in C++, use:

return -std::numeric_limits<double>::infinity();





and avoid:

return -std::numeric_limits<double>::max();





as it does not have the desired effect.




Troubleshooting

I’m getting weird spikes in my data/I have low acceptance fractions/both…
what should I do?

Double the number of walkers. If that doesn’t work, double it again. And
again. Until you run out of RAM. At that point, I don’t know!

The walkers are getting stuck in “islands” of low likelihood. How can I
fix that?

Try increasing the number of walkers. If that doesn’t work, you can try
pruning using a clustering algorithm like the one found in
arxiv:1104.2612 [http://arxiv.org/abs/1104.2612].







          

      

      

    

  

    
      
          
            
  
API

This page details the methods and classes provided by the emcee module.
The main entry point is through the EnsembleSampler object.


The Affine-Invariant Ensemble Sampler

Standard usage of emcee involves instantiating an
EnsembleSampler.


	
class emcee.EnsembleSampler(nwalkers, dim, lnpostfn, a=2.0, args=[], kwargs={}, postargs=None, threads=1, pool=None, live_dangerously=False, runtime_sortingfn=None)

	A generalized Ensemble sampler that uses 2 ensembles for parallelization.
The __init__ function will raise an AssertionError if
k < 2 * dim (and you haven’t set the live_dangerously parameter)
or if k is odd.

Warning: The chain member of this object has the shape:
(nwalkers, nlinks, dim) where nlinks is the number of steps
taken by the chain and k is the number of walkers.  Use the
flatchain property to get the chain flattened to
(nlinks, dim). For users of pre-1.0 versions, this shape is
different so be careful!


	Parameters

	
	nwalkers – The number of Goodman & Weare “walkers”.


	dim – Number of dimensions in the parameter space.


	lnpostfn – A function that takes a vector in the parameter space as input and
returns the natural logarithm of the posterior probability for that
position.


	a – (optional)
The proposal scale parameter. (default: 2.0)


	args – (optional)
A list of extra positional arguments for lnpostfn. lnpostfn
will be called with the sequence lnpostfn(p, *args, **kwargs).


	kwargs – (optional)
A list of extra keyword arguments for lnpostfn. lnpostfn
will be called with the sequence lnpostfn(p, *args, **kwargs).


	postargs – (optional)
Alias of args for backwards compatibility.


	threads – (optional)
The number of threads to use for parallelization. If threads == 1,
then the multiprocessing module is not used but if
threads > 1, then a Pool object is created and calls to
lnpostfn are run in parallel.


	pool – (optional)
An alternative method of using the parallelized algorithm. If
provided, the value of threads is ignored and the
object provided by pool is used for all parallelization. It
can be any object with a map method that follows the same
calling sequence as the built-in map function.


	runtime_sortingfn – (optional)
A function implementing custom runtime load-balancing. See
Loadbalancing in parallel runs for more information.









	
acceptance_fraction

	An array (length: k) of the fraction of steps accepted for each
walker.






	
acor

	An estimate of the autocorrelation time for each parameter (length:
dim).






	
blobs

	Get the list of “blobs” produced by sampling. The result is a list
(of length iterations) of list s (of length nwalkers) of
arbitrary objects. Note: this will actually be an empty list if
your lnpostfn doesn’t return any metadata.






	
chain

	A pointer to the Markov chain itself. The shape of this array is
(k, iterations, dim).






	
clear_blobs()

	Clear the blobs list.






	
clear_chain()

	An alias for reset() kept for backwards compatibility.






	
flatchain

	A shortcut for accessing chain flattened along the zeroth (walker)
axis.






	
flatlnprobability

	A shortcut to return the equivalent of lnprobability but aligned
to flatchain rather than chain.






	
get_autocorr_time(low=10, high=None, step=1, c=10, fast=False)

	Compute an estimate of the autocorrelation time for each parameter
(length: dim).


	Parameters

	
	low – (Optional[int])
The minimum window size to test.
(default: 10)


	high – (Optional[int])
The maximum window size to test.
(default: x.shape[axis] / (2*c))


	step – (Optional[int])
The step size for the window search.
(default: 1)


	c – (Optional[float])
The minimum number of autocorrelation times needed to trust the
estimate.
(default: 10)


	fast – (Optional[bool])
If True, only use the first 2^n (for the largest power)
entries for efficiency.
(default: False)













	
get_lnprob(p)

	Return the log-probability at the given position.






	
lnprobability

	A pointer to the matrix of the value of lnprobfn produced at each
step for each walker. The shape is (k, iterations).






	
random_state

	The state of the internal random number generator. In practice, it’s
the result of calling get_state() on a
numpy.random.mtrand.RandomState object. You can try to set this
property but be warned that if you do this and it fails, it will do
so silently.






	
reset()

	Clear the chain and lnprobability array. Also reset the
bookkeeping parameters.






	
run_mcmc(pos0, N, rstate0=None, lnprob0=None, **kwargs)

	Iterate sample() for N iterations and return the result.


	Parameters

	
	pos0 – The initial position vector.  Can also be None to resume from
where :func:run_mcmc left off the last time it executed.


	N – The number of steps to run.


	lnprob0 – (optional)
The log posterior probability at position p0. If lnprob
is not provided, the initial value is calculated.


	rstate0 – (optional)
The state of the random number generator. See the
random_state() property for details.


	kwargs – (optional)
Other parameters that are directly passed to sample().








This returns the results of the final sample in whatever form
sample() yields.  Usually, that’s:
pos, lnprob, rstate, blobs (blobs optional)






	
sample(p0, lnprob0=None, rstate0=None, blobs0=None, iterations=1, thin=1, storechain=True, mh_proposal=None)

	Advance the chain iterations steps as a generator.


	Parameters

	
	p0 – A list of the initial positions of the walkers in the
parameter space. It should have the shape (nwalkers, dim).


	lnprob0 – (optional)
The list of log posterior probabilities for the walkers at
positions given by p0. If lnprob is None, the initial
values are calculated. It should have the shape (k, dim).


	rstate0 – (optional)
The state of the random number generator.
See the Sampler.random_state property for details.


	iterations – (optional)
The number of steps to run.


	thin – (optional)
If you only want to store and yield every thin samples in the
chain, set thin to an integer greater than 1.


	storechain – (optional)
By default, the sampler stores (in memory) the positions and
log-probabilities of the samples in the chain. If you are
using another method to store the samples to a file or if you
don’t need to analyse the samples after the fact (for burn-in
for example) set storechain to False.


	mh_proposal – (optional)
A function that returns a list of positions for nwalkers
walkers given a current list of positions of the same size. See
utils.MH_proposal_axisaligned for an example.








At each iteration, this generator yields:


	pos - A list of the current positions of the walkers in the
parameter space. The shape of this object will be
(nwalkers, dim).


	lnprob - The list of log posterior probabilities for the
walkers at positions given by pos . The shape of this object
is (nwalkers, dim).


	rstate - The current state of the random number generator.


	blobs - (optional) The metadata “blobs” associated with the
current position. The value is only returned if lnpostfn
returns blobs too.















The Parallel-Tempered Ensemble Sampler

The PTSampler class performs a parallel-tempered ensemble
sampling using EnsembleSampler to sample within each
temperature.  This sort of sampling is useful if you expect your
distribution to be multi-modal. Take a look at the documentation to see how you might use this class.


	
class emcee.PTSampler(ntemps, nwalkers, dim, logl, logp, threads=1, pool=None, betas=None, a=2.0, Tmax=None, loglargs=[], logpargs=[], loglkwargs={}, logpkwargs={})

	A parallel-tempered ensemble sampler, using EnsembleSampler
for sampling within each parallel chain.


	Parameters

	
	ntemps – The number of temperatures.  Can be None, in which case
the Tmax argument sets the maximum temperature.


	nwalkers – The number of ensemble walkers at each temperature.


	dim – The dimension of parameter space.


	logl – The log-likelihood function.


	logp – The log-prior function.


	threads – (optional)
The number of parallel threads to use in sampling.


	pool – (optional)
Alternative to threads.  Any object that implements a
map method compatible with the built-in map will do
here.  For example, multi.Pool will do.


	betas – (optional)
Array giving the inverse temperatures, \(\beta=1/T\),
used in the ladder.  The default is chosen so that a Gaussian
posterior in the given number of dimensions will have a 0.25
tswap acceptance rate.


	a – (optional)
Proposal scale factor.


	Tmax – (optional)
Maximum temperature for the ladder.  If ntemps is
None, this argument is used to set the temperature ladder.


	loglargs – (optional)
Positional arguments for the log-likelihood function.


	logpargs – (optional)
Positional arguments for the log-prior function.


	loglkwargs – (optional)
Keyword arguments for the log-likelihood function.


	logpkwargs – (optional)
Keyword arguments for the log-prior function.









	
acceptance_fraction

	Matrix of shape (Ntemps, Nwalkers) detailing the
acceptance fraction for each walker.






	
acor

	Returns a matrix of autocorrelation lengths for each
parameter in each temperature of shape (Ntemps, Ndim).






	
betas

	Returns the sequence of inverse temperatures in the ladder.






	
chain

	Returns the stored chain of samples; shape (Ntemps,
Nwalkers, Nsteps, Ndim).






	
clear_chain()

	An alias for reset() kept for backwards compatibility.






	
flatchain

	Returns the stored chain, but flattened along the walker axis, so
of shape (Ntemps, Nwalkers*Nsteps, Ndim).






	
get_autocorr_time(**kwargs)

	Returns a matrix of autocorrelation lengths for each
parameter in each temperature of shape (Ntemps, Ndim).

Any arguments will be passed to autocorr.integrate_time().






	
get_lnprob(p)

	Return the log-probability at the given position.






	
lnlikelihood

	Matrix of ln-likelihood values; shape (Ntemps, Nwalkers, Nsteps).






	
lnprobability

	Matrix of lnprobability values; shape (Ntemps, Nwalkers, Nsteps).






	
random_state

	The state of the internal random number generator. In practice, it’s
the result of calling get_state() on a
numpy.random.mtrand.RandomState object. You can try to set this
property but be warned that if you do this and it fails, it will do
so silently.






	
reset()

	Clear the chain, lnprobability, lnlikelihood,
acceptance_fraction, tswap_acceptance_fraction stored
properties.






	
run_mcmc(pos0, N, rstate0=None, lnprob0=None, **kwargs)

	Iterate sample() for N iterations and return the result.


	Parameters

	
	pos0 – The initial position vector.  Can also be None to resume from
where :func:run_mcmc left off the last time it executed.


	N – The number of steps to run.


	lnprob0 – (optional)
The log posterior probability at position p0. If lnprob
is not provided, the initial value is calculated.


	rstate0 – (optional)
The state of the random number generator. See the
random_state() property for details.


	kwargs – (optional)
Other parameters that are directly passed to sample().








This returns the results of the final sample in whatever form
sample() yields.  Usually, that’s:
pos, lnprob, rstate, blobs (blobs optional)






	
sample(p0, lnprob0=None, lnlike0=None, iterations=1, thin=1, storechain=True)

	Advance the chains iterations steps as a generator.


	Parameters

	
	p0 – The initial positions of the walkers.  Shape should be
(ntemps, nwalkers, dim).


	lnprob0 – (optional)
The initial posterior values for the ensembles.  Shape
(ntemps, nwalkers).


	lnlike0 – (optional)
The initial likelihood values for the ensembles.  Shape
(ntemps, nwalkers).


	iterations – (optional)
The number of iterations to preform.


	thin – (optional)
The number of iterations to perform between saving the
state to the internal chain.


	storechain – (optional)
If True store the iterations in the chain
property.








At each iteration, this generator yields


	p, the current position of the walkers.


	lnprob the current posterior values for the walkers.


	lnlike the current likelihood values for the walkers.









	
thermodynamic_integration_log_evidence(logls=None, fburnin=0.1)

	Thermodynamic integration estimate of the evidence.


	Parameters

	
	logls – (optional) The log-likelihoods to use for
computing the thermodynamic evidence.  If None (the
default), use the stored log-likelihoods in the sampler.
Should be of shape (Ntemps, Nwalkers, Nsamples).


	fburnin – (optional)
The fraction of the chain to discard as burnin samples; only the
final 1-fburnin fraction of the samples will be used to
compute the evidence; the default is fburnin = 0.1.






	Return (lnZ, dlnZ)(lnZ, dlnZ)

	Returns an estimate of the
log-evidence and the error associated with the finite
number of temperatures at which the posterior has been
sampled.





The evidence is the integral of the un-normalized posterior
over all of parameter space:


\[Z \equiv \int d\theta \, l(\theta) p(\theta)\]

Thermodymanic integration is a technique for estimating the
evidence integral using information from the chains at various
temperatures.  Let


\[Z(\beta) = \int d\theta \, l^\beta(\theta) p(\theta)\]

Then


\[\frac{d \ln Z}{d \beta}
= \frac{1}{Z(\beta)} \int d\theta l^\beta p \ln l
= \left \langle \ln l \right \rangle_\beta\]

so


\[\ln Z(\beta = 1)
= \int_0^1 d\beta \left \langle \ln l \right\rangle_\beta\]

By computing the average of the log-likelihood at the
difference temperatures, the sampler can approximate the above
integral.






	
tswap_acceptance_fraction

	Returns an array of accepted temperature swap fractions for
each temperature; shape (ntemps, ).












Standard Metropolis-Hastings Sampler

The Metropolis-Hastings [http://en.wikipedia.org/wiki/Metropolis%E2%80%93Hastings_algorithm]
sampler included in this module is far from fine-tuned and optimized. It
is, however, stable and it has a consistent API so it can be useful for
testing and comparison.


	
class emcee.MHSampler(cov, *args, **kwargs)

	The most basic possible Metropolis-Hastings style MCMC sampler


	Parameters

	
	cov – The covariance matrix to use for the proposal distribution.


	dim – Number of dimensions in the parameter space.


	lnpostfn – A function that takes a vector in the parameter space as input and
returns the natural logarithm of the posterior probability for that
position.


	args – (optional)
A list of extra positional arguments for lnpostfn. lnpostfn
will be called with the sequence lnpostfn(p, *args, **kwargs).


	kwargs – (optional)
A list of extra keyword arguments for lnpostfn. lnpostfn
will be called with the sequence lnpostfn(p, *args, **kwargs).









	
acceptance_fraction

	The fraction of proposed steps that were accepted.






	
acor

	An estimate of the autocorrelation time for each parameter (length:
dim).






	
chain

	A pointer to the Markov chain.






	
clear_chain()

	An alias for reset() kept for backwards compatibility.






	
flatchain

	Alias of chain provided for compatibility.






	
get_autocorr_time(low=10, high=None, step=1, c=10, fast=False)

	Compute an estimate of the autocorrelation time for each parameter
(length: dim).


	Parameters

	
	low – (Optional[int])
The minimum window size to test.
(default: 10)


	high – (Optional[int])
The maximum window size to test.
(default: x.shape[axis] / (2*c))


	step – (Optional[int])
The step size for the window search.
(default: 1)


	c – (Optional[float])
The minimum number of autocorrelation times needed to trust the
estimate.
(default: 10)


	fast – (Optional[bool])
If True, only use the first 2^n (for the largest power)
entries for efficiency.
(default: False)













	
get_lnprob(p)

	Return the log-probability at the given position.






	
lnprobability

	A list of the log-probability values associated with each step in
the chain.






	
random_state

	The state of the internal random number generator. In practice, it’s
the result of calling get_state() on a
numpy.random.mtrand.RandomState object. You can try to set this
property but be warned that if you do this and it fails, it will do
so silently.






	
run_mcmc(pos0, N, rstate0=None, lnprob0=None, **kwargs)

	Iterate sample() for N iterations and return the result.


	Parameters

	
	pos0 – The initial position vector.  Can also be None to resume from
where :func:run_mcmc left off the last time it executed.


	N – The number of steps to run.


	lnprob0 – (optional)
The log posterior probability at position p0. If lnprob
is not provided, the initial value is calculated.


	rstate0 – (optional)
The state of the random number generator. See the
random_state() property for details.


	kwargs – (optional)
Other parameters that are directly passed to sample().








This returns the results of the final sample in whatever form
sample() yields.  Usually, that’s:
pos, lnprob, rstate, blobs (blobs optional)






	
sample(p0, lnprob=None, randomstate=None, thin=1, storechain=True, iterations=1)

	Advances the chain iterations steps as an iterator


	Parameters

	
	p0 – The initial position vector.


	lnprob0 – (optional)
The log posterior probability at position p0. If lnprob
is not provided, the initial value is calculated.


	rstate0 – (optional)
The state of the random number generator. See the
random_state() property for details.


	iterations – (optional)
The number of steps to run.


	thin – (optional)
If you only want to store and yield every thin samples in the
chain, set thin to an integer greater than 1.


	storechain – (optional)
By default, the sampler stores (in memory) the positions and
log-probabilities of the samples in the chain. If you are
using another method to store the samples to a file or if you
don’t need to analyse the samples after the fact (for burn-in
for example) set storechain to False.








At each iteration, this generator yields:


	pos - The current positions of the chain in the parameter
space.


	lnprob - The value of the log posterior at pos .


	rstate - The current state of the random number generator.















Abstract Sampler Object

This section is mostly for developers who would be interested in implementing
a new sampler for inclusion in emcee. A good starting point would be
to subclass the sampler object and override the Sampler.sample()
method.


	
class emcee.Sampler(dim, lnprobfn, args=[], kwargs={})

	An abstract sampler object that implements various helper functions


	Parameters

	
	dim – The number of dimensions in the parameter space.


	lnpostfn – A function that takes a vector in the parameter space as input and
returns the natural logarithm of the posterior probability for that
position.


	args – (optional)
A list of extra positional arguments for lnpostfn. lnpostfn
will be called with the sequence lnpostfn(p, *args, **kwargs).


	kwargs – (optional)
A list of extra keyword arguments for lnpostfn. lnpostfn
will be called with the sequence lnpostfn(p, *args, **kwargs).









	
acceptance_fraction

	The fraction of proposed steps that were accepted.






	
chain

	A pointer to the Markov chain.






	
clear_chain()

	An alias for reset() kept for backwards compatibility.






	
flatchain

	Alias of chain provided for compatibility.






	
get_lnprob(p)

	Return the log-probability at the given position.






	
lnprobability

	A list of the log-probability values associated with each step in
the chain.






	
random_state

	The state of the internal random number generator. In practice, it’s
the result of calling get_state() on a
numpy.random.mtrand.RandomState object. You can try to set this
property but be warned that if you do this and it fails, it will do
so silently.






	
reset()

	Clear chain, lnprobability and the bookkeeping parameters.






	
run_mcmc(pos0, N, rstate0=None, lnprob0=None, **kwargs)

	Iterate sample() for N iterations and return the result.


	Parameters

	
	pos0 – The initial position vector.  Can also be None to resume from
where :func:run_mcmc left off the last time it executed.


	N – The number of steps to run.


	lnprob0 – (optional)
The log posterior probability at position p0. If lnprob
is not provided, the initial value is calculated.


	rstate0 – (optional)
The state of the random number generator. See the
random_state() property for details.


	kwargs – (optional)
Other parameters that are directly passed to sample().








This returns the results of the final sample in whatever form
sample() yields.  Usually, that’s:
pos, lnprob, rstate, blobs (blobs optional)












Autocorrelation Analysis

A good heuristic for assessing convergence of samplings is the integrated
autocorrelation time. emcee includes (as of version 2.1.0) tools for
computing this and the autocorrelation function itself.


	
emcee.autocorr.integrated_time(x, low=10, high=None, step=1, c=10, full_output=False, axis=0, fast=False)

	Estimate the integrated autocorrelation time of a time series.

This estimate uses the iterative procedure described on page 16 of Sokal’s
notes [http://www.stat.unc.edu/faculty/cji/Sokal.pdf] to determine a
reasonable window size.


	Args:

	
	x: The time series. If multidimensional, set the time axis using the

	axis keyword argument and the function will be computed for
every other axis.





low (Optional[int]): The minimum window size to test. (default: 10)
high (Optional[int]): The maximum window size to test. (default:


x.shape[axis] / (2*c))





	step (Optional[int]): The step size for the window search. (default:

	1)



	c (Optional[float]): The minimum number of autocorrelation times

	needed to trust the estimate. (default: 10)



	full_output (Optional[bool]): Return the final window size as well as

	the autocorrelation time. (default: False)



	axis (Optional[int]): The time axis of x. Assumed to be the first

	axis if not specified.



	fast (Optional[bool]): If True, only use the first 2^n (for

	the largest power) entries for efficiency. (default: False)







	Returns:

	
	float or array: An estimate of the integrated autocorrelation time of

	the time series x computed along the axis axis.



	Optional[int]: The final window size that was used. Only returned if

	full_output is True.







	Raises

	
	AutocorrError: If the autocorrelation time can’t be reliably estimated

	from the chain. This normally means that the chain is too short.














	
emcee.autocorr.function(x, axis=0, fast=False)

	Estimate the autocorrelation function of a time series using the FFT.


	Args:

	
	x: The time series. If multidimensional, set the time axis using the

	axis keyword argument and the function will be computed for
every other axis.



	axis (Optional[int]): The time axis of x. Assumed to be the first

	axis if not specified.



	fast (Optional[bool]): If True, only use the first 2^n (for

	the largest power) entries for efficiency. (default: False)







	Returns:

	array: The autocorrelation function of the time series.












Utilities


	
emcee.utils.sample_ball(p0, std, size=1)

	Produce a ball of walkers around an initial parameter value.


	Parameters

	
	p0 – The initial parameter value.


	std – The axis-aligned standard deviation.


	size – The number of samples to produce.













	
class emcee.utils.MH_proposal_axisaligned(stdev)

	A Metropolis-Hastings proposal, with axis-aligned Gaussian steps,
for convenient use as the mh_proposal option to
EnsembleSampler.sample() .








Pools

These are some helper classes for using the built-in parallel version of the
algorithm. These objects can be initialized and then passed into the
constructor for the EnsembleSampler object using the pool keyword
argument.


Interruptible Pool

Python’s multiprocessing.Pool class doesn’t interact well with
KeyboardInterrupt signals, as documented in places such as:


	http://stackoverflow.com/questions/1408356/


	http://stackoverflow.com/questions/11312525/


	http://noswap.com/blog/python-multiprocessing-keyboardinterrupt




Various workarounds have been shared. Here, we adapt the one proposed in the
last link above, by John Reese, and shared as


	https://github.com/jreese/multiprocessing-keyboardinterrupt/




Our version is a drop-in replacement for multiprocessing.Pool … as long as
the map() method is the only one that needs to be interrupt-friendly.

Contributed by Peter K. G. Williams <peter@newton.cx>.

Added in version 2.1.0


	
class emcee.interruptible_pool.InterruptiblePool(processes=None, initializer=None, initargs=(), **kwargs)

	A modified version of multiprocessing.pool.Pool that has better
behavior with regard to KeyboardInterrupts in the map() method.


	Parameters

	
	processes – (optional)
The number of worker processes to use; defaults to the number of CPUs.


	initializer – (optional)
Either None, or a callable that will be invoked by each worker
process when it starts.


	initargs – (optional)
Arguments for initializer; it will be called as
initializer(*initargs).


	kwargs – (optional)
Extra arguments. Python 2.7 supports a maxtasksperchild parameter.









	
map(func, iterable, chunksize=None)

	Equivalent of map() built-in, without swallowing
KeyboardInterrupt.


	Parameters

	
	func – The function to apply to the items.


	iterable – An iterable of items that will have func applied to them.



















MPI Pool

Built-in support for MPI distributed systems. See the documentation:
Using MPI to distribute the computations.


	
class emcee.utils.MPIPool(comm=None, debug=False, loadbalance=False)

	A pool that distributes tasks over a set of MPI processes. MPI is an
API for distributed memory parallelism.  This pool will let you run
emcee without shared memory, letting you use much larger machines
with emcee.

The pool only support the map() method at the moment because
this is the only functionality that emcee needs. That being said,
this pool is fairly general and it could be used for other purposes.

Contributed by Joe Zuntz [https://github.com/joezuntz].


	Parameters

	
	comm – (optional)
The mpi4py communicator.


	debug – (optional)
If True, print out a lot of status updates at each step.


	loadbalance – (optional)
if True and ntask > Ncpus, tries to loadbalance by sending
out one task to each cpu first and then sending out the rest
as the cpus get done.









	
bcast(*args, **kwargs)

	Equivalent to mpi4py bcast() collective operation.






	
close()

	Just send a message off to all the pool members which contains
the special _close_pool_message sentinel.






	
is_master()

	Is the current process the master?






	
map(function, tasks)

	Like the built-in map() function, apply a function to all
of the values in a list and return the list of results.


	Parameters

	
	function – The function to apply to the list.


	tasks – The list of elements.













	
wait()

	If this isn’t the master process, wait for instructions.
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License

The MIT License (MIT)

Copyright (c) 2010-2013 Daniel Foreman-Mackey & contributors.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.









          

      

      

    

  

    
      
          
            
  
Testimonials


“My research—modeling strong gravitational lenses with 10-20 free
parameters—would be very difficult or impossible without emcee.”

—Shane Bussmann (CfA)




Since the initial release, emcee has been used in many published
scientific studies.
The most up-to-date list of citations to our paper—mostly positive ;-)—can be
found on The Astrophysics Data System (ADS) [http://adsabs.harvard.edu/cgi-bin/nph-ref_query?bibcode=2013PASP..125..306F&amp;refs=CITATIONS].
Here is a very incomplete list of users:


	Dorman, Guhathakurta, Fardal, et al. (2012) [http://arxiv.org/abs/1204.4455]


	Olofsson, Juhász, Henning, et al. (2012) [http://arxiv.org/abs/1204.2374]


	Bovy, Rix, Liu, et al. (2012) [http://arxiv.org/abs/1111.1724]


	Lang & Hogg (2012) [http://arxiv.org/abs/1103.6038]


	Bovy, Rix, Hogg, et al. (2012) [http://arxiv.org/abs/1202.2819]


	Bussmann, Gurwell, Fu, et al. (2012) [http://arxiv.org/abs/1207.2724]


	Brammer, Sánchez-Janssen, Labbé, et al. (2012) [http://arxiv.org/abs/1207.3795]


	Brown, Rosenfeld, Andrews, et al. (2012) [http://arxiv.org/abs/1209.1641]


	Bovy, Allende Prieto, Beers, et al. (2012) [http://arxiv.org/abs/1209.0759]


	Roškar, Debattista, & Loebman (2012) [http://arxiv.org/abs/1211.1982]


	Crossfield, Barman, Hansen, et al. (2012) [http://arxiv.org/abs/1210.4836]


	Morton (2012) [http://arxiv.org/abs/1206.1568]


	Monnier, Che, Zhao, et al. (2012) [http://arxiv.org/abs/1211.6055]


	Huppenkothen, Watts, Uttley, et al. (2012) [http://arxiv.org/abs/1212.1011]


	Cieza, Olofsson, Harvey, et al. (2013) [http://arxiv.org/abs/1211.4510]


	Weisz, Fouesneau, Hogg, et al. (2013) [http://arxiv.org/abs/1211.6105]


	Reis, Miller, Reynolds, et al. (2013) [http://arxiv.org/abs/1208.3277]


	Sanders, & Fabian (2013) [http://arxiv.org/abs/1212.1259]


	Akeret, Seehars, Amara, et al. (2012) [http://arxiv.org/abs/1212.1721]


	Riechers, Bradford, Clements, et al. (2013) [http://arxiv.org/abs/1304.4256]


	Kamruddin & Dexter (2013) [http://arxiv.org/abs/1306.3226]


	Sparre et al. (2013) [http://arxiv.org/abs/1309.2940]


	Price-Whelan & Johnston (2013) [http://arxiv.org/abs/1308.2670]


	Watkins, van de Ven, den Brok, et al. (2013) [http://arxiv.org/abs/1308.4789]


	Price-Whelan et al. (2013) [http://arxiv.org/abs/1311.3683]


	Guillochon, Manukian & Ramirez-Ruiz (2013) [http://arxiv.org/abs/1304.6397]


	Guillochon, Loeb, MacLeod & Ramirez-Ruiz (2014) [http://arxiv.org/abs/1401.2990]


	Cargile, James, Pepper, et al. (2014) [http://arxiv.org/abs/1312.3946]


	Keller et al. (2014) [http://arxiv.org/abs/1402.1517]


	Ransom et al. (2014) [http://arxiv.org/abs/1401.0535]


	Pérez et al. (2014) [http://arxiv.org/abs/1402.0832]


	Oliver et al. (2014) [http://dx.doi.org/10.1063/1.4866813]


	Narbutis et al. (2014) [http://arxiv.org/abs/1410.2514]


	Narbutis et al. (2014) [http://arxiv.org/abs/1410.2521]


	Kirichenko et al. (2015) [http://arxiv.org/abs/1501.04594]




Please let us know if your work should be included
in this list or fork the repository [https://github.com/dfm/emcee] and add
it yourself.





          

      

      

    

  

    
      
          
            
  
dfm Sphinx Style

This repository contains sphinx styles based on Kenneth Reitz’s modifications
to  Mitsuhiko’s Flask theme.


Usage


	Put this folder as _themes into your docs folder.


	Add this to your conf.py:

sys.path.append(os.path.abspath('_themes'))
html_theme_path = ['_themes']
html_theme = 'dfm'
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