

    
      
          
            
  
emcee

emcee is an MIT licensed pure-Python implementation of Goodman & Weare’s
Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler [https://msp.berkeley.edu/camcos/2010/5-1/p04.xhtml] and these pages will
show you how to use it.

This documentation won’t teach you too much about MCMC but there are a lot
of resources available for that (try this one [https://www.inference.org.uk/mackay/itprnn/book.html]).
We also published a paper [https://arxiv.org/abs/1202.3665] explaining
the emcee algorithm and implementation in detail.

emcee has been used in quite a few projects in the astrophysical literature and it is being actively developed on GitHub [https://github.com/dfm/emcee].
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Basic Usage

If you wanted to draw samples from a 5 dimensional Gaussian, you would do
something like:

import numpy as np
import emcee

def log_prob(x, ivar):
    return -0.5 * np.sum(ivar * x ** 2)

ndim, nwalkers = 5, 100
ivar = 1. / np.random.rand(ndim)
p0 = np.random.randn(nwalkers, ndim)

sampler = emcee.EnsembleSampler(nwalkers, ndim, log_prob, args=[ivar])
sampler.run_mcmc(p0, 10000)





A more complete example is available in the Quickstart tutorial.




How to Use This Guide

To start, you’re probably going to need to follow the Installation guide to
get emcee installed on your computer.
After you finish that, you can probably learn most of what you need from the
tutorials listed below (you might want to start with
Quickstart and go from there).
If you need more details about specific functionality, the User Guide below
should have what you need.

We welcome bug reports, patches, feature requests, and other comments via the GitHub
issue tracker [https://github.com/dfm/emcee/issues], but you should check out the
contribution guidelines [https://github.com/dfm/emcee/blob/master/CONTRIBUTING.md]
first.
If you have a question about the use of emcee, please post it to the users list [https://groups.google.com/forum/#!forum/emcee-users] instead of the issue tracker.
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	Moves
	Ensemble moves
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Tutorials


	Quickstart

	Fitting a model to data

	Parallelization

	Autocorrelation analysis & convergence

	Saving & monitoring progress

	Using different moves








License & Attribution

Copyright 2010-2019 Dan Foreman-Mackey and contributors [https://github.com/dfm/emcee/graphs/contributors].

emcee is free software made available under the MIT License. For details
see the LICENSE.

If you make use of emcee in your work, please cite our paper
(arXiv [https://arxiv.org/abs/1202.3665],
ADS [https://ui.adsabs.harvard.edu/abs/2013PASP..125..306F],
BibTeX [https://ui.adsabs.harvard.edu/abs/2013PASP..125..306F/exportcitation])
and consider adding your paper to the Testimonials list.




Changelog


3.0.2 (2019-11-15)


	Added tutorial for moves interface


	Added information about contributions to documentation


	Improved documentation for installation and testing


	Fixed dtype issues and instability in linear dependence test


	Final release for JOSS [https://joss.theoj.org/] submission







3.0.1 (2019-10-28)


	Added support for long double dtypes


	Prepared manuscript to submit to JOSS [https://joss.theoj.org/]


	Improved packaging and release infrastructure


	Fixed bug in initial linear dependence test







3.0.0 (2019-09-30)


	Added progress bars using tqdm [https://github.com/tqdm/tqdm].


	Added HDF5 backend using h5py [http://www.h5py.org/].


	Added new Move interface for more flexible specification of proposals.


	Improved autocorrelation time estimation algorithm.


	Switched documentation to using Jupyter notebooks for tutorials.


	More details can be found on the docs [https://emcee.readthedocs.io/en/v3.0.0/user/upgrade/].







2.2.0 (2016-07-12)


	Improved autocorrelation time computation.


	Numpy compatibility issues.


	Fixed deprecated integer division behavior in PTSampler.







2.1.0 (2014-05-22)


	Removing dependence on acor extension.


	Added arguments to PTSampler function.


	Added automatic load-balancing for MPI runs.


	Added custom load-balancing for MPI and multiprocessing.


	New default multiprocessing pool that supports ^C.







2.0.0 (2013-11-17)


	Re-licensed under the MIT license!


	Clearer less verbose documentation.


	Added checks for parameters becoming infinite or NaN.


	Added checks for log-probability becoming NaN.


	Improved parallelization and various other tweaks in PTSampler.







1.2.0 (2013-01-30)


	Added a parallel tempering sampler PTSampler.


	Added instructions and utilities for using emcee with MPI.


	Added flatlnprobability property to the EnsembleSampler object
to be consistent with the flatchain property.


	Updated document for publication in PASP.


	Various bug fixes.







1.1.3 (2012-11-22)


	Made the packaging system more robust even when numpy is not installed.







1.1.2 (2012-08-06)


	Another bug fix related to metadata blobs: the shape of the final blobs
object was incorrect and all of the entries would generally be identical
because we needed to copy the list that was appended at each step. Thanks
goes to Jacqueline Chen (MIT) for catching this problem.







1.1.1 (2012-07-30)


	Fixed bug related to metadata blobs. The sample function was yielding
the blobs object even when it wasn’t expected.







1.1.0 (2012-07-28)


	Allow the lnprobfn to return arbitrary “blobs” of data as well as the
log-probability.


	Python 3 compatible (thanks Alex Conley)!


	Various speed ups and clean ups in the core code base.


	New documentation with better examples and more discussion.







1.0.1 (2012-03-31)


	Fixed transpose bug in the usage of acor in EnsembleSampler.







1.0.0 (2012-02-15)


	Initial release.












          

      

      

    

  

    
      
          
            
  
Installation

Since emcee is a pure Python module, it should be pretty easy to install.
All you’ll need numpy [https://numpy.org/].


Note

For pre-release versions of emcee, you need to follow the
instructions in From source.




Package managers

The recommended way to install the stable version of emcee is using
pip [http://www.pip-installer.org/]

python -m pip install -U pip
pip install -U setuptools setuptools_scm pep517
pip install -U emcee





or conda [https://conda.io]

conda update conda
conda install -c conda-forge emcee








Distribution packages

Some distributions contain emcee packages that can be installed with the
system package manager as listed in the Repology packaging status [https://repology.org/project/python:emcee/versions]. Note that the packages
in some of these distributions may be out-of-date. You can always get the
current stable version via pip or conda, or the latest development version
as described in From source below.

[image: ../_images/python:emcee.svg]
 [https://repology.org/project/python:emcee/versions]


From source

emcee is developed on GitHub [https://github.com/dfm/emcee] so if you feel
like hacking or if you like all the most recent shininess, you can clone the
source repository and install from there

python -m pip install -U pip
python -m pip install -U setuptools setuptools_scm pep517
git clone https://github.com/dfm/emcee.git
cd emcee
python -m pip install -e .








Test the installation

To make sure that the installation went alright, you can execute some unit and
integration tests.
To do this, you’ll need the source (see From source above) and
py.test [https://docs.pytest.org].
You’ll execute the tests by running the following command in the root
directory of the source code:

python -m pip install -U pytest h5py
python -m pytest -v src/emcee/tests





This might take a few minutes but you shouldn’t get any errors if all went
as planned.







          

      

      

    

  

    
      
          
            
  
The Ensemble Sampler

Standard usage of emcee involves instantiating an
EnsembleSampler.


	
class emcee.EnsembleSampler(nwalkers, ndim, log_prob_fn, pool=None, moves=None, args=None, kwargs=None, backend=None, vectorize=False, blobs_dtype=None, a=None, postargs=None, threads=None, live_dangerously=None, runtime_sortingfn=None)

	An ensemble MCMC sampler

If you are upgrading from an earlier version of emcee, you might notice
that some arguments are now deprecated. The parameters that control the
proposals have been moved to the Moves interface (a and
live_dangerously), and the parameters related to parallelization can
now be controlled via the pool argument (Parallelization).


	Parameters

	
	nwalkers (int) – The number of walkers in the ensemble.


	ndim (int) – Number of dimensions in the parameter space.


	log_prob_fn (callable) – A function that takes a vector in the
parameter space as input and returns the natural logarithm of the
posterior probability (up to an additive constant) for that
position.


	moves (Optional) – This can be a single move object, a list of moves,
or a “weighted” list of the form [(emcee.moves.StretchMove(),
0.1), ...]. When running, the sampler will randomly select a
move from this list (optionally with weights) for each proposal.
(default: StretchMove)


	args (Optional) – A list of extra positional arguments for
log_prob_fn. log_prob_fn will be called with the sequence
log_pprob_fn(p, *args, **kwargs).


	kwargs (Optional) – A dict of extra keyword arguments for
log_prob_fn. log_prob_fn will be called with the sequence
log_pprob_fn(p, *args, **kwargs).


	pool (Optional) – An object with a map method that follows the same
calling sequence as the built-in map function. This is
generally used to compute the log-probabilities for the ensemble
in parallel.


	backend (Optional) – Either a backends.Backend or a subclass
(like backends.HDFBackend) that is used to store and
serialize the state of the chain. By default, the chain is stored
as a set of numpy arrays in memory, but new backends can be
written to support other mediums.


	vectorize (Optional[bool]) – If True, log_prob_fn is expected
to accept a list of position vectors instead of just one. Note
that pool will be ignored if this is True.
(default: False)









	
acceptance_fraction

	The fraction of proposed steps that were accepted






	
compute_log_prob(coords)

	Calculate the vector of log-probability for the walkers


	Parameters

	coords – (ndarray[…, ndim]) The position vector in parameter
space where the probability should be calculated.





This method returns:


	log_prob: A vector of log-probabilities with one entry for each
walker in this sub-ensemble.


	blob: The list of meta data returned by the log_post_fn at
this position or None if nothing was returned.









	
get_autocorr_time(**kwargs)

	Compute an estimate of the autocorrelation time for each parameter


	Parameters

	
	thin (Optional[int]) – Use only every thin steps from the
chain. The returned estimate is multiplied by thin so the
estimated time is in units of steps, not thinned steps.
(default: 1)


	discard (Optional[int]) – Discard the first discard steps in
the chain as burn-in. (default: 0)








Other arguments are passed directly to
emcee.autocorr.integrated_time().


	Returns

	
	The integrated autocorrelation time estimate for the

	chain for each parameter.









	Return type

	array[ndim]










	
get_blobs(**kwargs)

	Get the chain of blobs for each sample in the chain


	Parameters

	
	flat (Optional[bool]) – Flatten the chain across the ensemble.
(default: False)


	thin (Optional[int]) – Take only every thin steps from the
chain. (default: 1)


	discard (Optional[int]) – Discard the first discard steps in
the chain as burn-in. (default: 0)






	Returns

	The chain of blobs.



	Return type

	array[.., nwalkers]










	
get_chain(**kwargs)

	Get the stored chain of MCMC samples


	Parameters

	
	flat (Optional[bool]) – Flatten the chain across the ensemble.
(default: False)


	thin (Optional[int]) – Take only every thin steps from the
chain. (default: 1)


	discard (Optional[int]) – Discard the first discard steps in
the chain as burn-in. (default: 0)






	Returns

	The MCMC samples.



	Return type

	array[.., nwalkers, ndim]










	
get_last_sample(**kwargs)

	Access the most recent sample in the chain






	
get_log_prob(**kwargs)

	Get the chain of log probabilities evaluated at the MCMC samples


	Parameters

	
	flat (Optional[bool]) – Flatten the chain across the ensemble.
(default: False)


	thin (Optional[int]) – Take only every thin steps from the
chain. (default: 1)


	discard (Optional[int]) – Discard the first discard steps in
the chain as burn-in. (default: 0)






	Returns

	The chain of log probabilities.



	Return type

	array[.., nwalkers]










	
random_state

	The state of the internal random number generator. In practice, it’s
the result of calling get_state() on a
numpy.random.mtrand.RandomState object. You can try to set this
property but be warned that if you do this and it fails, it will do
so silently.






	
reset()

	Reset the bookkeeping parameters






	
run_mcmc(initial_state, nsteps, **kwargs)

	Iterate sample() for nsteps iterations and return the result


	Parameters

	
	initial_state – The initial state or position vector. Can also be
None to resume from where :func:run_mcmc left off the
last time it executed.


	nsteps – The number of steps to run.








Other parameters are directly passed to sample().

This method returns the most recent result from sample().






	
sample(initial_state, log_prob0=None, rstate0=None, blobs0=None, iterations=1, tune=False, skip_initial_state_check=False, thin_by=1, thin=None, store=True, progress=False)

	Advance the chain as a generator


	Parameters

	
	initial_state (State or ndarray[nwalkers, ndim]) – The initial
State or positions of the walkers in the
parameter space.


	iterations (Optional[int]) – The number of steps to generate.


	tune (Optional[bool]) – If True, the parameters of some moves
will be automatically tuned.


	thin_by (Optional[int]) – If you only want to store and yield every
thin_by samples in the chain, set thin_by to an
integer greater than 1. When this is set, iterations *
thin_by proposals will be made.


	store (Optional[bool]) – By default, the sampler stores (in memory)
the positions and log-probabilities of the samples in the
chain. If you are using another method to store the samples to
a file or if you don’t need to analyze the samples after the
fact (for burn-in for example) set store to False.


	progress (Optional[bool or str]) – If True, a progress bar will
be shown as the sampler progresses. If a string, will select a
specific tqdm progress bar - most notable is
'notebook', which shows a progress bar suitable for
Jupyter notebooks.  If False, no progress bar will be
shown.


	skip_initial_state_check (Optional[bool]) – If True, a check
that the initial_state can fully explore the space will be
skipped. (default: False)








Every thin_by steps, this generator yields the
State of the ensemble.









Note that several of the EnsembleSampler methods return or consume
State objects:


	
class emcee.State(coords, log_prob=None, blobs=None, random_state=None, copy=False)

	The state of the ensemble during an MCMC run

For backwards compatibility, this will unpack into coords, log_prob,
(blobs), random_state when iterated over (where blobs will only be
included if it exists and is not None).


	Parameters

	
	coords (ndarray[nwalkers, ndim]) – The current positions of the walkers
in the parameter space.


	log_prob (ndarray[nwalkers, ndim], Optional) – Log posterior
probabilities for the  walkers at positions given by coords.


	blobs (Optional) – The metadata “blobs” associated with the current
position. The value is only returned if lnpostfn returns blobs too.


	random_state (Optional) – The current state of the random number
generator.
















          

      

      

    

  

    
      
          
            
  
Moves

emcee was originally built on the “stretch move” ensemble method from Goodman
& Weare (2010) [https://msp.org/camcos/2010/5-1/p04.xhtml], but
starting with version 3, emcee nows allows proposals generated from a mixture
of “moves”.
This can be used to get a more efficient sampler for models where the stretch
move is not well suited, such as high dimensional or multi-modal probability
surfaces.

A “move” is an algorithm for updating the coordinates of walkers in an
ensemble sampler based on the current set of coordinates in a manner that
satisfies detailed balance.
In most cases, the update for each walker is based on the coordinates in some
other set of walkers, the complementary ensemble.

These moves have been designed to update the ensemble in parallel following
the prescription from Foreman-Mackey et al. (2013) [https://arxiv.org/abs/1202.3665].
This means that computationally expensive models can take advantage of
multiple CPUs to accelerate sampling (see the Parallelization tutorial for
more information).

The moves are selected using the moves keyword for the
EnsembleSampler and the mixture can optionally be a weighted mixture
of moves.
During sampling, at each step, a move is randomly selected from the mixture
and used as the proposal.

The default move is still the moves.StretchMove, but the others are
described below.
Many standard ensemble moves are available with parallelization provided by
the moves.RedBlueMove abstract base class that implements the
parallelization method described by Foreman-Mackey et al. (2013) [https://arxiv.org/abs/1202.3665].
In addition to these moves, there is also a framework for building
Metropolis–Hastings proposals that update the walkers using independent
proposals.
moves.MHMove is the base class for this type of move and a concrete
implementation of a Gaussian Metropolis proposal is found in
moves.GaussianMove.


Note

The Using different moves tutorial shows a concrete example of how to use
this interface.




Ensemble moves


	
class emcee.moves.RedBlueMove(nsplits=2, randomize_split=True, live_dangerously=False)

	An abstract red-blue ensemble move with parallelization as described in
Foreman-Mackey et al. (2013) [https://arxiv.org/abs/1202.3665].


	Parameters

	
	nsplits (Optional[int]) – The number of sub-ensembles to use. Each
sub-ensemble is updated in parallel using the other sets as the
complementary ensemble. The default value is 2 and you
probably won’t need to change that.


	randomize_split (Optional[bool]) – Randomly shuffle walkers between
sub-ensembles. The same number of walkers will be assigned to
each sub-ensemble on each iteration. By default, this is True.


	live_dangerously (Optional[bool]) – By default, an update will fail with
a RuntimeError if the number of walkers is smaller than twice
the dimension of the problem because the walkers would then be
stuck on a low dimensional subspace. This can be avoided by
switching between the stretch move and, for example, a
Metropolis-Hastings step. If you want to do this and suppress the
error, set live_dangerously = True. Thanks goes (once again)
to @dstndstn for this wonderful terminology.









	
propose(model, state)

	Use the move to generate a proposal and compute the acceptance


	Parameters

	
	coords – The initial coordinates of the walkers.


	log_probs – The initial log probabilities of the walkers.


	log_prob_fn – A function that computes the log probabilities for a
subset of walkers.


	random – A numpy-compatible random number state.

















	
class emcee.moves.StretchMove(a=2.0, **kwargs)

	A Goodman & Weare (2010) [https://msp.org/camcos/2010/5-1/p04.xhtml] “stretch move” with
parallelization as described in Foreman-Mackey et al. (2013) [https://arxiv.org/abs/1202.3665].


	Parameters

	a – (optional)
The stretch scale parameter. (default: 2.0)










	
class emcee.moves.WalkMove(s=None, **kwargs)

	A Goodman & Weare (2010) [https://msp.org/camcos/2010/5-1/p04.xhtml] “walk move” with
parallelization as described in Foreman-Mackey et al. (2013) [https://arxiv.org/abs/1202.3665].


	Parameters

	s – (optional)
The number of helper walkers to use. By default it will use all the
walkers in the complement.










	
class emcee.moves.KDEMove(bw_method=None, **kwargs)

	A proposal using a KDE of the complementary ensemble

This is a simplified version of the method used in kombine [https://github.com/bfarr/kombine]. If you use this proposal, you should
use a lot of walkers in your ensemble.


	Parameters

	bw_method – The bandwidth estimation method. See the scipy docs [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html]
for allowed values.










	
class emcee.moves.DEMove(sigma=1e-05, gamma0=None, **kwargs)

	A proposal using differential evolution.

This Differential evolution proposal [http://www.stat.columbia.edu/~gelman/stuff_for_blog/cajo.pdf] is
implemented following Nelson et al. (2013) [https://arxiv.org/abs/1311.5229].


	Parameters

	
	sigma (float) – The standard deviation of the Gaussian used to stretch
the proposal vector.


	gamma0 (Optional[float]) – The mean stretch factor for the proposal
vector. By default, it is \(2.38 / \sqrt{2\,\mathrm{ndim}}\)
as recommended by the two references.













	
class emcee.moves.DESnookerMove(gammas=1.7, **kwargs)

	A snooker proposal using differential evolution.

Based on Ter Braak & Vrugt (2008) [http://link.springer.com/article/10.1007/s11222-008-9104-9].

Credit goes to GitHub user mdanthony17 [https://github.com/mdanthony17]
for proposing this as an addition to the original emcee package.


	Parameters

	gammas (Optional[float]) – The mean stretch factor for the proposal
vector. By default, it is \(1.7\) as recommended by the
reference.












Metropolis–Hastings moves


	
class emcee.moves.MHMove(proposal_function, ndim=None)

	A general Metropolis-Hastings proposal

Concrete implementations can be made by providing a proposal_function
argument that implements the proposal as described below.
For standard Gaussian Metropolis moves, moves.GaussianMove can be
used.


	Parameters

	
	proposal_function – The proposal function. It should take 2 arguments: a
numpy-compatible random number generator and a (K, ndim) list
of coordinate vectors. This function should return the proposed
position and the log-ratio of the proposal probabilities
(\(\ln q(x;\,x^\prime) - \ln q(x^\prime;\,x)\) where
\(x^\prime\) is the proposed coordinate).


	ndim (Optional[int]) – If this proposal is only valid for a specific
dimension of parameter space, set that here.









	
propose(model, state)

	Use the move to generate a proposal and compute the acceptance


	Parameters

	
	coords – The initial coordinates of the walkers.


	log_probs – The initial log probabilities of the walkers.


	log_prob_fn – A function that computes the log probabilities for a
subset of walkers.


	random – A numpy-compatible random number state.

















	
class emcee.moves.GaussianMove(cov, mode='vector', factor=None)

	A Metropolis step with a Gaussian proposal function.


	Parameters

	
	cov – The covariance of the proposal function. This can be a scalar,
vector, or matrix and the proposal will be assumed isotropic,
axis-aligned, or general respectively.


	mode (Optional) – Select the method used for updating parameters. This
can be one of "vector", "random", or "sequential". The
"vector" mode updates all dimensions simultaneously,
"random" randomly selects a dimension and only updates that
one, and "sequential" loops over dimensions and updates each
one in turn.


	factor (Optional[float]) – If provided the proposal will be made with a
standard deviation uniformly selected from the range
exp(U(-log(factor), log(factor))) * cov. This is invalid for
the "vector" mode.






	Raises

	ValueError – If the proposal dimensions are invalid or if any of any of
the other arguments are inconsistent.















          

      

      

    

  

    
      
          
            
  
Blobs

Way back in version 1.1 of emcee, the concept of blobs was introduced.
This allows a user to track arbitrary metadata associated with every sample in
the chain.
The interface to access these blobs was previously a little clunky because it
was stored as a list of lists of blobs.
In version 3, this interface has been updated to use NumPy arrays instead and
the sampler will do type inference to save the simplest possible
representation of the blobs.


Using blobs to track the value of the prior

A common pattern is to save the value of the log prior at every step in the
chain.
To do this, you could do something like:

import emcee
import numpy as np

def log_prior(params):
    return -0.5 * np.sum(params**2)

def log_like(params):
    return -0.5 * np.sum((params / 0.1)**2)

def log_prob(params):
    lp = log_prior(params)
    if not np.isfinite(lp):
        return -np.inf, -np.inf
    ll = log_like(params)
    if not np.isfinite(ll):
        return lp, -np.inf
    return lp + ll, lp

coords = np.random.randn(32, 3)
nwalkers, ndim = coords.shape
sampler = emcee.EnsembleSampler(nwalkers, ndim, log_prob)
sampler.run_mcmc(coords, 100)

log_prior_samps = sampler.get_blobs()
flat_log_prior_samps = sampler.get_blobs(flat=True)

print(log_prior_samps.shape)  # (100, 32)
print(flat_log_prior_samps.shape)  # (3200,)





After running this, the “blobs” stored by the sampler will be a (nsteps,
nwalkers) NumPy array with the value of the log prior at every sample.




Named blobs & custom dtypes

If you want to save multiple pieces of metadata, it can be useful to name
them.
To implement this, we use the blobs_dtype argument in
EnsembleSampler.
For example, let’s say that, for some reason, we wanted to save the mean of
the parameters as well as the log prior.
To do this, we would update the above example as follows:

def log_prob(params):
    lp = log_prior(params)
    if not np.isfinite(lp):
        return -np.inf, -np.inf
    ll = log_like(params)
    if not np.isfinite(ll):
        return lp, -np.inf
    return lp + ll, lp, np.mean(params)

coords = np.random.randn(32, 3)
nwalkers, ndim = coords.shape

# Here are the important lines
dtype = [("log_prior", float), ("mean", float)]
sampler = emcee.EnsembleSampler(nwalkers, ndim, log_prob,
                                blobs_dtype=dtype)

sampler.run_mcmc(coords, 100)

blobs = sampler.get_blobs()
log_prior_samps = blobs["log_prior"]
mean_samps = blobs["mean"]
print(log_prior_samps.shape)
print(mean_samps.shape)

flat_blobs = sampler.get_blobs(flat=True)
flat_log_prior_samps = flat_blobs["log_prior"]
flat_mean_samps = flat_blobs["mean"]
print(flat_log_prior_samps.shape)
print(flat_mean_samps.shape)





This will print

(100, 32)
(100, 32)
(3200,)
(3200,)





and the blobs object will be a structured NumPy array with two columns
called log_prior and mean.







          

      

      

    

  

    
      
          
            
  
Backends

Starting with version 3, emcee has an interface for serializing the sampler
output.
This can be useful in any scenario where you want to share the results of
sampling or when sampling with an expensive model because, even if the
sampler crashes, the current state of the chain will always be saved.

There is currently one backend that can be used to serialize the chain to a
file: emcee.backends.HDFBackend.
The methods and options for this backend are documented below.
It can also be used as a reader for existing samplings.
For example, if a chain was saved using the backends.HDFBackend, the
results can be accessed as follows:

reader = emcee.backends.HDFBackend("chain_filename.h5", read_only=True)
flatchain = reader.get_chain(flat=True)





The read_only argument is not required, but it will make sure that you
don’t inadvertently overwrite the samples in the file.


	
class emcee.backends.Backend(dtype=None)

	A simple default backend that stores the chain in memory


	
get_autocorr_time(discard=0, thin=1, **kwargs)

	Compute an estimate of the autocorrelation time for each parameter


	Parameters

	
	thin (Optional[int]) – Use only every thin steps from the
chain. The returned estimate is multiplied by thin so the
estimated time is in units of steps, not thinned steps.
(default: 1)


	discard (Optional[int]) – Discard the first discard steps in
the chain as burn-in. (default: 0)








Other arguments are passed directly to
emcee.autocorr.integrated_time().


	Returns

	
	The integrated autocorrelation time estimate for the

	chain for each parameter.









	Return type

	array[ndim]










	
get_blobs(**kwargs)

	Get the chain of blobs for each sample in the chain


	Parameters

	
	flat (Optional[bool]) – Flatten the chain across the ensemble.
(default: False)


	thin (Optional[int]) – Take only every thin steps from the
chain. (default: 1)


	discard (Optional[int]) – Discard the first discard steps in
the chain as burn-in. (default: 0)






	Returns

	The chain of blobs.



	Return type

	array[.., nwalkers]










	
get_chain(**kwargs)

	Get the stored chain of MCMC samples


	Parameters

	
	flat (Optional[bool]) – Flatten the chain across the ensemble.
(default: False)


	thin (Optional[int]) – Take only every thin steps from the
chain. (default: 1)


	discard (Optional[int]) – Discard the first discard steps in
the chain as burn-in. (default: 0)






	Returns

	The MCMC samples.



	Return type

	array[.., nwalkers, ndim]










	
get_last_sample()

	Access the most recent sample in the chain






	
get_log_prob(**kwargs)

	Get the chain of log probabilities evaluated at the MCMC samples


	Parameters

	
	flat (Optional[bool]) – Flatten the chain across the ensemble.
(default: False)


	thin (Optional[int]) – Take only every thin steps from the
chain. (default: 1)


	discard (Optional[int]) – Discard the first discard steps in
the chain as burn-in. (default: 0)






	Returns

	The chain of log probabilities.



	Return type

	array[.., nwalkers]










	
grow(ngrow, blobs)

	Expand the storage space by some number of samples


	Parameters

	
	ngrow (int) – The number of steps to grow the chain.


	blobs – The current list of blobs. This is used to compute the
dtype for the blobs array.













	
has_blobs()

	Returns True if the model includes blobs






	
reset(nwalkers, ndim)

	Clear the state of the chain and empty the backend


	Parameters

	
	nwakers (int) – The size of the ensemble


	ndim (int) – The number of dimensions













	
save_step(state, accepted)

	Save a step to the backend


	Parameters

	
	state (State) – The State of the ensemble.


	accepted (ndarray) – An array of boolean flags indicating whether
or not the proposal for each walker was accepted.













	
shape

	The dimensions of the ensemble (nwalkers, ndim)










	
class emcee.backends.HDFBackend(filename, name='mcmc', read_only=False, dtype=None)

	A backend that stores the chain in an HDF5 file using h5py


Note

You must install h5py [http://www.h5py.org/] to use this
backend.




	Parameters

	
	filename (str) – The name of the HDF5 file where the chain will be
saved.


	name (str; optional) – The name of the group where the chain will
be saved.


	read_only (bool; optional) – If True, the backend will throw a
RuntimeError if the file is opened with write access.









	
get_autocorr_time(discard=0, thin=1, **kwargs)

	Compute an estimate of the autocorrelation time for each parameter


	Parameters

	
	thin (Optional[int]) – Use only every thin steps from the
chain. The returned estimate is multiplied by thin so the
estimated time is in units of steps, not thinned steps.
(default: 1)


	discard (Optional[int]) – Discard the first discard steps in
the chain as burn-in. (default: 0)








Other arguments are passed directly to
emcee.autocorr.integrated_time().


	Returns

	
	The integrated autocorrelation time estimate for the

	chain for each parameter.









	Return type

	array[ndim]










	
get_blobs(**kwargs)

	Get the chain of blobs for each sample in the chain


	Parameters

	
	flat (Optional[bool]) – Flatten the chain across the ensemble.
(default: False)


	thin (Optional[int]) – Take only every thin steps from the
chain. (default: 1)


	discard (Optional[int]) – Discard the first discard steps in
the chain as burn-in. (default: 0)






	Returns

	The chain of blobs.



	Return type

	array[.., nwalkers]










	
get_chain(**kwargs)

	Get the stored chain of MCMC samples


	Parameters

	
	flat (Optional[bool]) – Flatten the chain across the ensemble.
(default: False)


	thin (Optional[int]) – Take only every thin steps from the
chain. (default: 1)


	discard (Optional[int]) – Discard the first discard steps in
the chain as burn-in. (default: 0)






	Returns

	The MCMC samples.



	Return type

	array[.., nwalkers, ndim]










	
get_last_sample()

	Access the most recent sample in the chain






	
get_log_prob(**kwargs)

	Get the chain of log probabilities evaluated at the MCMC samples


	Parameters

	
	flat (Optional[bool]) – Flatten the chain across the ensemble.
(default: False)


	thin (Optional[int]) – Take only every thin steps from the
chain. (default: 1)


	discard (Optional[int]) – Discard the first discard steps in
the chain as burn-in. (default: 0)






	Returns

	The chain of log probabilities.



	Return type

	array[.., nwalkers]










	
grow(ngrow, blobs)

	Expand the storage space by some number of samples


	Parameters

	
	ngrow (int) – The number of steps to grow the chain.


	blobs – The current list of blobs. This is used to compute the
dtype for the blobs array.













	
has_blobs()

	Returns True if the model includes blobs






	
reset(nwalkers, ndim)

	Clear the state of the chain and empty the backend


	Parameters

	
	nwakers (int) – The size of the ensemble


	ndim (int) – The number of dimensions













	
save_step(state, accepted)

	Save a step to the backend


	Parameters

	
	state (State) – The State of the ensemble.


	accepted (ndarray) – An array of boolean flags indicating whether
or not the proposal for each walker was accepted.













	
shape

	The dimensions of the ensemble (nwalkers, ndim)













          

      

      

    

  

    
      
          
            
  
Autocorrelation Analysis

A good heuristic for assessing convergence of samplings is the integrated
autocorrelation time. emcee includes tools for computing this and the
autocorrelation function itself. More details can be found in
Autocorrelation analysis & convergence.


	
emcee.autocorr.integrated_time(x, c=5, tol=50, quiet=False)

	Estimate the integrated autocorrelation time of a time series.

This estimate uses the iterative procedure described on page 16 of
Sokal’s notes [http://www.stat.unc.edu/faculty/cji/Sokal.pdf] to
determine a reasonable window size.


	Parameters

	
	x – The time series. If multidimensional, set the time axis using the
axis keyword argument and the function will be computed for
every other axis.


	c (Optional[float]) – The step size for the window search. (default:
5)


	tol (Optional[float]) – The minimum number of autocorrelation times
needed to trust the estimate. (default: 50)


	quiet (Optional[bool]) – This argument controls the behavior when the
chain is too short. If True, give a warning instead of raising
an AutocorrError. (default: False)






	Returns

	
	An estimate of the integrated autocorrelation time of

	the time series x computed along the axis axis.









	Return type

	float or array






	Raises

	
	AutocorrError: If the autocorrelation time can’t be reliably estimated

	from the chain and quiet is False. This normally means
that the chain is too short.














	
emcee.autocorr.function_1d(x)

	Estimate the normalized autocorrelation function of a 1-D series


	Parameters

	x – The series as a 1-D numpy array.



	Returns

	The autocorrelation function of the time series.



	Return type

	array













          

      

      

    

  

    
      
          
            
  
Upgrading From Pre-3.0 Versions

The version 3 release of emcee is the biggest update in years.
That being said, we’ve made every attempt to maintain backwards compatibility
while still offering new features.
The main new features include:


	A Moves interface that allows the use of a variety of ensemble
proposals,


	A more self consistent and user-friendly Blobs interface,


	A Backends interface that simplifies the process of serializing the
sampling results, and


	The long requested progress bar (implemented using tqdm [https://github.com/tqdm/tqdm]) so that users can watch the grass grow
while the sampler does its thing (this is as simple as installing tqdm and
setting progress=True in EnsembleSampler).




To improve the stability and supportability of emcee, we also removed some
features.
The main removals are as follows:


	The threads keyword argument has been removed in favor of the pool
interface (see the Parallelization tutorial for more information).
The old interface had issues with memory consumption and hanging processes
when the sampler object wasn’t explicitly deleted.
The pool interface has been supported since the first release of emcee
and existing code should be easy to update following the Parallelization
tutorial.


	The MPIPool has been removed and forked to the schwimmbad [https://github.com/adrn/schwimmbad] project.
There was a longstanding issue with memory leaks and random crashes of the
emcee implementation of the MPIPool that have been fixed in schwimmbad.
schwimmbad also supports several other pool interfaces that can be used
for parallel sampling.
See the Parallelization tutorial for more details.


	The PTSampler has been removed and forked to the ptemcee [https://github.com/willvousden/ptemcee] project.
The existing implementation had been gathering dust and there aren’t enough
resources to maintain the sampler within the emcee project.








          

      

      

    

  

    
      
          
            
  
FAQ

The not-so-frequently asked questions that still have useful answers


What are “walkers”?

Walkers are the members of the ensemble. They are almost like separate
Metropolis-Hastings chains but, of course, the proposal distribution for
a given walker depends on the positions of all the other walkers in the
ensemble. See Goodman & Weare (2010) [https://msp.org/camcos/2010/5-1/p04.xhtml] for more details.




How should I initialize the walkers?

The best technique seems to be to start in a small ball around the a priori
preferred position. Don’t worry, the walkers quickly branch out and explore
the rest of the space.




Parameter limits

In order to confine the walkers to a finite volume of the parameter space, have
your function return negative infinity outside of the volume corresponding to
the logarithm of 0 prior probability using

return -numpy.inf











          

      

      

    

  

    
      
          
            
  Note: This tutorial was generated from an IPython notebook that can be
downloaded here.


Quickstart

The easiest way to get started with using emcee is to use it for a
project. To get you started, here’s an annotated, fully-functional
example that demonstrates a standard usage pattern.


How to sample a multi-dimensional Gaussian

We’re going to demonstrate how you might draw samples from the
multivariate Gaussian density given by:


\[p(\vec{x}) \propto \exp \left [ - \frac{1}{2} (\vec{x} -
    \vec{\mu})^\mathrm{T} \, \Sigma ^{-1} \, (\vec{x} - \vec{\mu})
    \right ]\]

where \(\vec{\mu}\) is an \(N\)-dimensional vector position of
the mean of the density and \(\Sigma\) is the square N-by-N
covariance matrix.

The first thing that we need to do is import the necessary modules:

import numpy as np





Then, we’ll code up a Python function that returns the density
\(p(\vec{x})\) for specific values of \(\vec{x}\),
\(\vec{\mu}\) and \(\Sigma^{-1}\). In fact, emcee actually
requires the logarithm of \(p\). We’ll call it log_prob:

def log_prob(x, mu, cov):
    diff = x - mu
    return -0.5 * np.dot(diff, np.linalg.solve(cov, diff))





It is important that the first argument of the probability function is
the position of a single “walker” (a N dimensional numpy array).
The following arguments are going to be constant every time the function
is called and the values come from the args parameter of our
EnsembleSampler that we’ll see soon.

Now, we’ll set up the specific values of those “hyperparameters” in 5
dimensions:

ndim = 5

np.random.seed(42)
means = np.random.rand(ndim)

cov = 0.5 - np.random.rand(ndim ** 2).reshape((ndim, ndim))
cov = np.triu(cov)
cov += cov.T - np.diag(cov.diagonal())
cov = np.dot(cov, cov)





and where cov is \(\Sigma\).

How about we use 32 walkers? Before we go on, we need to guess a
starting point for each of the 32 walkers. This position will be a
5-dimensional vector so the initial guess should be a 32-by-5 array.
It’s not a very good guess but we’ll just guess a random number between
0 and 1 for each component:

nwalkers = 32
p0 = np.random.rand(nwalkers, ndim)





Now that we’ve gotten past all the bookkeeping stuff, we can move on to
the fun stuff. The main interface provided by emcee is the
EnsembleSampler object so let’s get ourselves one of those:

import emcee

sampler = emcee.EnsembleSampler(nwalkers, ndim, log_prob, args=[means, cov])





Remember how our function log_prob required two extra arguments when
it was called? By setting up our sampler with the args argument,
we’re saying that the probability function should be called as:

log_prob(p0[0], means, cov)





-2.5960945890854434





If we didn’t provide any args parameter, the calling sequence would
be log_prob(p0[0]) instead.

It’s generally a good idea to run a few “burn-in” steps in your MCMC
chain to let the walkers explore the parameter space a bit and get
settled into the maximum of the density. We’ll run a burn-in of 100
steps (yep, I just made that number up… it’s hard to really know how
many steps of burn-in you’ll need before you start) starting from our
initial guess p0:

state = sampler.run_mcmc(p0, 100)
sampler.reset()





You’ll notice that I saved the final position of the walkers (after the
100 steps) to a variable called state. You can check out what will
be contained in the other output variables by looking at the
documentation for the EnsembleSampler.run_mcmc() function. The
call to the EnsembleSampler.reset() method clears all of the
important bookkeeping parameters in the sampler so that we get a fresh
start. It also clears the current positions of the walkers so it’s a
good thing that we saved them first.

Now, we can do our production run of 10000 steps:

sampler.run_mcmc(state, 10000);





The samples can be accessed using the
EnsembleSampler.get_chain() method. This will return an array
with the shape (10000, 32, 5) giving the parameter values for each
walker at each step in the chain. Take note of that shape and make sure
that you know where each of those numbers come from. You can make
histograms of these samples to get an estimate of the density that you
were sampling:

import matplotlib.pyplot as plt

samples = sampler.get_chain(flat=True)
plt.hist(samples[:, 0], 100, color="k", histtype="step")
plt.xlabel(r"$\theta_1$")
plt.ylabel(r"$p(\theta_1)$")
plt.gca().set_yticks([]);





[image: ../_images/quickstart_21_0.png]
Another good test of whether or not the sampling went well is to check
the mean acceptance fraction of the ensemble using the
EnsembleSampler.acceptance_fraction() property:

print("Mean acceptance fraction: {0:.3f}".format(np.mean(sampler.acceptance_fraction)))





Mean acceptance fraction: 0.552





and the integrated autocorrelation time (see the Autocorrelation analysis & convergence
tutorial for more details)

print(
    "Mean autocorrelation time: {0:.3f} steps".format(
        np.mean(sampler.get_autocorr_time())
    )
)





Mean autocorrelation time: 57.112 steps











          

      

      

    

  

    
      
          
            
  Note: This tutorial was generated from an IPython notebook that can be
downloaded here.


Fitting a model to data

If you’re reading this right now then you’re probably interested in
using emcee to fit a model to some noisy data. On this page, I’ll
demonstrate how you might do this in the simplest non-trivial model that
I could think of: fitting a line to data when you don’t believe the
error bars on your data. The interested reader should check out Hogg,
Bovy & Lang (2010) [https://arxiv.org/abs/1008.4686] for a much more
complete discussion of how to fit a line to data in The Real World™ and
why MCMC might come in handy.


The generative probabilistic model

When you approach a new problem, the first step is generally to write
down the likelihood function (the probability of a dataset given the
model parameters). This is equivalent to describing the generative
procedure for the data. In this case, we’re going to consider a linear
model where the quoted uncertainties are underestimated by a constant
fractional amount. You can generate a synthetic dataset from this model:

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(123)

# Choose the "true" parameters.
m_true = -0.9594
b_true = 4.294
f_true = 0.534

# Generate some synthetic data from the model.
N = 50
x = np.sort(10 * np.random.rand(N))
yerr = 0.1 + 0.5 * np.random.rand(N)
y = m_true * x + b_true
y += np.abs(f_true * y) * np.random.randn(N)
y += yerr * np.random.randn(N)

plt.errorbar(x, y, yerr=yerr, fmt=".k", capsize=0)
x0 = np.linspace(0, 10, 500)
plt.plot(x0, m_true * x0 + b_true, "k", alpha=0.3, lw=3)
plt.xlim(0, 10)
plt.xlabel("x")
plt.ylabel("y");





[image: ../_images/line_4_0.png]
The true model is shown as the thick grey line and the effect of the
underestimated uncertainties is obvious when you look at this figure.
The standard way to fit a line to these data (assuming independent
Gaussian error bars) is linear least squares. Linear least squares is
appealing because solving for the parameters—and their associated
uncertainties—is simply a linear algebraic operation. Following the
notation in Hogg, Bovy & Lang
(2010) [https://arxiv.org/abs/1008.4686], the linear least squares
solution to these data is

A = np.vander(x, 2)
C = np.diag(yerr * yerr)
ATA = np.dot(A.T, A / (yerr ** 2)[:, None])
cov = np.linalg.inv(ATA)
w = np.linalg.solve(ATA, np.dot(A.T, y / yerr ** 2))
print("Least-squares estimates:")
print("m = {0:.3f} ± {1:.3f}".format(w[0], np.sqrt(cov[0, 0])))
print("b = {0:.3f} ± {1:.3f}".format(w[1], np.sqrt(cov[1, 1])))

plt.errorbar(x, y, yerr=yerr, fmt=".k", capsize=0)
plt.plot(x0, m_true * x0 + b_true, "k", alpha=0.3, lw=3, label="truth")
plt.plot(x0, np.dot(np.vander(x0, 2), w), "--k", label="LS")
plt.legend(fontsize=14)
plt.xlim(0, 10)
plt.xlabel("x")
plt.ylabel("y");





Least-squares estimates:
m = -1.104 ± 0.016
b = 5.441 ± 0.091





[image: ../_images/line_6_1.png]
This figure shows the least-squares estimate of the line parameters as a
dashed line. This isn’t an unreasonable result but the uncertainties on
the slope and intercept seem a little small (because of the small error
bars on most of the data points).




Maximum likelihood estimation

The least squares solution found in the previous section is the maximum
likelihood result for a model where the error bars are assumed correct,
Gaussian and independent. We know, of course, that this isn’t the right
model. Unfortunately, there isn’t a generalization of least squares that
supports a model like the one that we know to be true. Instead, we need
to write down the likelihood function and numerically optimize it. In
mathematical notation, the correct likelihood function is:


\[\ln\,p(y\,|\,x,\sigma,m,b,f) =
-\frac{1}{2} \sum_n \left[
    \frac{(y_n-m\,x_n-b)^2}{s_n^2}
    + \ln \left ( 2\pi\,s_n^2 \right )
\right]\]

where


\[s_n^2 = \sigma_n^2+f^2\,(m\,x_n+b)^2 \quad .\]

This likelihood function is simply a Gaussian where the variance is
underestimated by some fractional amount: \(f\). In Python, you
would code this up as:

def log_likelihood(theta, x, y, yerr):
    m, b, log_f = theta
    model = m * x + b
    sigma2 = yerr ** 2 + model ** 2 * np.exp(2 * log_f)
    return -0.5 * np.sum((y - model) ** 2 / sigma2 + np.log(sigma2))





In this code snippet, you’ll notice that we’re using the logarithm of
\(f\) instead of \(f\) itself for reasons that will become clear
in the next section. For now, it should at least be clear that this
isn’t a bad idea because it will force \(f\) to be always positive.
A good way of finding this numerical optimum of this likelihood function
is to use the
scipy.optimize [https://docs.scipy.org/doc/scipy/reference/optimize.html]
module:

from scipy.optimize import minimize

np.random.seed(42)
nll = lambda *args: -log_likelihood(*args)
initial = np.array([m_true, b_true, np.log(f_true)]) + 0.1 * np.random.randn(3)
soln = minimize(nll, initial, args=(x, y, yerr))
m_ml, b_ml, log_f_ml = soln.x

print("Maximum likelihood estimates:")
print("m = {0:.3f}".format(m_ml))
print("b = {0:.3f}".format(b_ml))
print("f = {0:.3f}".format(np.exp(log_f_ml)))

plt.errorbar(x, y, yerr=yerr, fmt=".k", capsize=0)
plt.plot(x0, m_true * x0 + b_true, "k", alpha=0.3, lw=3, label="truth")
plt.plot(x0, np.dot(np.vander(x0, 2), w), "--k", label="LS")
plt.plot(x0, np.dot(np.vander(x0, 2), [m_ml, b_ml]), ":k", label="ML")
plt.legend(fontsize=14)
plt.xlim(0, 10)
plt.xlabel("x")
plt.ylabel("y");





Maximum likelihood estimates:
m = -1.003
b = 4.528
f = 0.454





[image: ../_images/line_11_1.png]
It’s worth noting that the optimize module minimizes functions whereas
we would like to maximize the likelihood. This goal is equivalent to
minimizing the negative likelihood (or in this case, the negative
log likelihood). In this figure, the maximum likelihood (ML) result is
plotted as a dotted black line—compared to the true model (grey line)
and linear least-squares (LS; dashed line). That looks better!

The problem now: how do we estimate the uncertainties on m and b?
What’s more, we probably don’t really care too much about the value of
f but it seems worthwhile to propagate any uncertainties about its
value to our final estimates of m and b. This is where MCMC comes
in.




Marginalization & uncertainty estimation

This isn’t the place to get into the details of why you might want to
use MCMC in your research but it is worth commenting that a common
reason is that you would like to marginalize over some “nuisance
parameters” and find an estimate of the posterior probability function
(the distribution of parameters that is consistent with your dataset)
for others. MCMC lets you do both of these things in one fell swoop! You
need to start by writing down the posterior probability function (up to
a constant):


\[p (m,b,f\,|\,x,y,\sigma) \propto p(m,b,f)\,p(y\,|\,x,\sigma,m,b,f) \quad .\]

We have already, in the previous section, written down the likelihood
function


\[p(y\,|\,x,\sigma,m,b,f)\]

so the missing component is the “prior” function


\[p(m,b,f) \quad .\]

This function encodes any previous knowledge that we have about the
parameters: results from other experiments, physically acceptable
ranges, etc. It is necessary that you write down priors if you’re going
to use MCMC because all that MCMC does is draw samples from a
probability distribution and you want that to be a probability
distribution for your parameters. This is important: you cannot draw
parameter samples from your likelihood function. This is because a
likelihood function is a probability distribution over datasets so,
conditioned on model parameters, you can draw representative datasets
(as demonstrated at the beginning of this exercise) but you cannot draw
parameter samples.

In this example, we’ll use uniform (so-called “uninformative”) priors on
\(m\), \(b\) and the logarithm of \(f\). For example, we’ll
use the following conservative prior on \(m\):


\[\begin{split}p(m) = \left \{\begin{array}{ll}
        1 / 5.5 \,, & \mbox{if}\,-5 < m < 1/2 \\
        0 \,, & \mbox{otherwise}
    \end{array}
    \right .\end{split}\]

In code, the log-prior is (up to a constant):

def log_prior(theta):
    m, b, log_f = theta
    if -5.0 < m < 0.5 and 0.0 < b < 10.0 and -10.0 < log_f < 1.0:
        return 0.0
    return -np.inf





Then, combining this with the definition of log_likelihood from
above, the full log-probability function is:

def log_probability(theta, x, y, yerr):
    lp = log_prior(theta)
    if not np.isfinite(lp):
        return -np.inf
    return lp + log_likelihood(theta, x, y, yerr)





After all this setup, it’s easy to sample this distribution using emcee.
We’ll start by initializing the walkers in a tiny Gaussian ball around
the maximum likelihood result (I’ve found that this tends to be a pretty
good initialization in most cases) and then run 5,000 steps of MCMC.

import emcee

pos = soln.x + 1e-4 * np.random.randn(32, 3)
nwalkers, ndim = pos.shape

sampler = emcee.EnsembleSampler(nwalkers, ndim, log_probability, args=(x, y, yerr))
sampler.run_mcmc(pos, 5000, progress=True);





100%|██████████| 5000/5000 [00:06<00:00, 815.49it/s]





Let’s take a look at what the sampler has done. A good first step is to
look at the time series of the parameters in the chain. The samples can
be accessed using the EnsembleSampler.get_chain() method. This
will return an array with the shape (5000, 32, 3) giving the
parameter values for each walker at each step in the chain. The figure
below shows the positions of each walker as a function of the number of
steps in the chain:

fig, axes = plt.subplots(3, figsize=(10, 7), sharex=True)
samples = sampler.get_chain()
labels = ["m", "b", "log(f)"]
for i in range(ndim):
    ax = axes[i]
    ax.plot(samples[:, :, i], "k", alpha=0.3)
    ax.set_xlim(0, len(samples))
    ax.set_ylabel(labels[i])
    ax.yaxis.set_label_coords(-0.1, 0.5)

axes[-1].set_xlabel("step number");





[image: ../_images/line_20_0.png]
As mentioned above, the walkers start in small distributions around the
maximum likelihood values and then they quickly wander and start
exploring the full posterior distribution. In fact, after fewer than 50
steps, the samples seem pretty well “burnt-in”. That is a hard statement
to make quantitatively, but we can look at an estimate of the integrated
autocorrelation time (see the Autocorrelation analysis & convergence tutorial for more
details):

tau = sampler.get_autocorr_time()
print(tau)





[35.73919335 35.69339914 36.05722561]





This suggests that only about 40 steps are needed for the chain to
“forget” where it started. It’s not unreasonable to throw away a few
times this number of steps as “burn-in”. Let’s discard the initial 100
steps, thin by about half the autocorrelation time (15 steps), and
flatten the chain so that we have a flat list of samples:

flat_samples = sampler.get_chain(discard=100, thin=15, flat=True)
print(flat_samples.shape)





(10432, 3)








Results

Now that we have this list of samples, let’s make one of the most useful
plots you can make with your MCMC results: a corner plot. You’ll need
the corner.py module [http://corner.readthedocs.io] but once you
have it, generating a corner plot is as simple as:

import corner

fig = corner.corner(
    flat_samples, labels=labels, truths=[m_true, b_true, np.log(f_true)]
);





[image: ../_images/line_26_0.png]
The corner plot shows all the one and two dimensional projections of the
posterior probability distributions of your parameters. This is useful
because it quickly demonstrates all of the covariances between
parameters. Also, the way that you find the marginalized distribution
for a parameter or set of parameters using the results of the MCMC chain
is to project the samples into that plane and then make an N-dimensional
histogram. That means that the corner plot shows the marginalized
distribution for each parameter independently in the histograms along
the diagonal and then the marginalized two dimensional distributions in
the other panels.

Another diagnostic plot is the projection of your results into the space
of the observed data. To do this, you can choose a few (say 100 in this
case) samples from the chain and plot them on top of the data points:

inds = np.random.randint(len(flat_samples), size=100)
for ind in inds:
    sample = flat_samples[ind]
    plt.plot(x0, np.dot(np.vander(x0, 2), sample[:2]), "C1", alpha=0.1)
plt.errorbar(x, y, yerr=yerr, fmt=".k", capsize=0)
plt.plot(x0, m_true * x0 + b_true, "k", label="truth")
plt.legend(fontsize=14)
plt.xlim(0, 10)
plt.xlabel("x")
plt.ylabel("y");





[image: ../_images/line_28_0.png]
This leaves us with one question: which numbers should go in the
abstract? There are a few different options for this but my favorite is
to quote the uncertainties based on the 16th, 50th, and 84th percentiles
of the samples in the marginalized distributions. To compute these
numbers for this example, you would run:

from IPython.display import display, Math

for i in range(ndim):
    mcmc = np.percentile(flat_samples[:, i], [16, 50, 84])
    q = np.diff(mcmc)
    txt = "\mathrm{{{3}}} = {0:.3f}_{{-{1:.3f}}}^{{{2:.3f}}}"
    txt = txt.format(mcmc[1], q[0], q[1], labels[i])
    display(Math(txt))






\[\displaystyle \mathrm{m} = -1.012_{-0.078}^{0.081}\]


\[\displaystyle \mathrm{b} = 4.566_{-0.372}^{0.355}\]


\[\displaystyle \mathrm{log(f)} = -0.776_{-0.147}^{0.162}\]







          

      

      

    

  

    
      
          
            
  Note: This tutorial was generated from an IPython notebook that can be
downloaded here.


Parallelization


Note

Some builds of NumPy (including the version included with Anaconda) will automatically parallelize some operations using something like the MKL linear algebra. This can cause problems when used with the parallelization methods described here so it can be good to turn that off (by setting the environment variable OMP_NUM_THREADS=1, for example).



import os

os.environ["OMP_NUM_THREADS"] = "1"





With emcee, it’s easy to make use of multiple CPUs to speed up slow
sampling. There will always be some computational overhead introduced by
parallelization so it will only be beneficial in the case where the
model is expensive, but this is often true for real research problems.
All parallelization techniques are accessed using the pool keyword
argument in the EnsembleSampler class but, depending on your
system and your model, there are a few pool options that you can choose
from. In general, a pool is any Python object with a map method
that can be used to apply a function to a list of numpy arrays. Below,
we will discuss a few options.

In all of the following examples, we’ll test the code with the following
convoluted model:

import time
import numpy as np


def log_prob(theta):
    t = time.time() + np.random.uniform(0.005, 0.008)
    while True:
        if time.time() >= t:
            break
    return -0.5 * np.sum(theta ** 2)





This probability function will randomly sleep for a fraction of a second
every time it is called. This is meant to emulate a more realistic
situation where the model is computationally expensive to compute.

To start, let’s sample the usual (serial) way:

import emcee

np.random.seed(42)
initial = np.random.randn(32, 5)
nwalkers, ndim = initial.shape
nsteps = 100

sampler = emcee.EnsembleSampler(nwalkers, ndim, log_prob)
start = time.time()
sampler.run_mcmc(initial, nsteps, progress=True)
end = time.time()
serial_time = end - start
print("Serial took {0:.1f} seconds".format(serial_time))





100%|██████████| 100/100 [00:21<00:00,  4.68it/s]





Serial took 21.4 seconds






Multiprocessing

The simplest method of parallelizing emcee is to use the
multiprocessing module from the standard
library [https://docs.python.org/3/library/multiprocessing.html]. To
parallelize the above sampling, you could update the code as follows:

from multiprocessing import Pool

with Pool() as pool:
    sampler = emcee.EnsembleSampler(nwalkers, ndim, log_prob, pool=pool)
    start = time.time()
    sampler.run_mcmc(initial, nsteps, progress=True)
    end = time.time()
    multi_time = end - start
    print("Multiprocessing took {0:.1f} seconds".format(multi_time))
    print("{0:.1f} times faster than serial".format(serial_time / multi_time))





100%|██████████| 100/100 [00:06<00:00, 16.42it/s]





Multiprocessing took 6.4 seconds
3.4 times faster than serial





I have 4 cores on the machine where this is being tested:

from multiprocessing import cpu_count

ncpu = cpu_count()
print("{0} CPUs".format(ncpu))





4 CPUs





We don’t quite get the factor of 4 runtime decrease that you might
expect because there is some overhead in the parallelization, but we’re
getting pretty close with this example and this will get even closer for
more expensive models.




MPI

Multiprocessing can only be used for distributing calculations across
processors on one machine. If you want to take advantage of a bigger
cluster, you’ll need to use MPI. In that case, you need to execute the
code using the mpiexec executable, so this demo is slightly more
convoluted. For this example, we’ll write the code to a file called
script.py and then execute it using MPI, but when you really use the
MPI pool, you’ll probably just want to edit the script directly. To run
this example, you’ll first need to install the schwimmbad
library [https://github.com/adrn/schwimmbad] because emcee no longer
includes its own MPIPool.

with open("script.py", "w") as f:
    f.write("""
import sys
import time
import emcee
import numpy as np
from schwimmbad import MPIPool

def log_prob(theta):
    t = time.time() + np.random.uniform(0.005, 0.008)
    while True:
        if time.time() >= t:
            break
    return -0.5*np.sum(theta**2)

with MPIPool() as pool:
    if not pool.is_master():
        pool.wait()
        sys.exit(0)

    np.random.seed(42)
    initial = np.random.randn(32, 5)
    nwalkers, ndim = initial.shape
    nsteps = 100

    sampler = emcee.EnsembleSampler(nwalkers, ndim, log_prob, pool=pool)
    start = time.time()
    sampler.run_mcmc(initial, nsteps)
    end = time.time()
    print(end - start)
""")

mpi_time = !mpiexec -n {ncpu} python script.py
mpi_time = float(mpi_time[0])
print("MPI took {0:.1f} seconds".format(mpi_time))
print("{0:.1f} times faster than serial".format(serial_time / mpi_time))





MPI took 8.8 seconds
2.4 times faster than serial





There is often more overhead introduced by MPI than multiprocessing so
we get less of a gain this time. That being said, MPI is much more
flexible and it can be used to scale to huge systems.




Pickling, data transfer & arguments

All parallel Python implementations work by spinning up multiple
python processes with identical environments then and passing
information between the processes using pickle. This means that the
probability function must be
picklable [https://docs.python.org/3/library/pickle.html#pickle-picklable].

Some users might hit issues when they use args to pass data to their
model. These args must be pickled and passed every time the model is
called. This can be a problem if you have a large dataset, as you can
see here:

def log_prob_data(theta, data):
    a = data[0]  # Use the data somehow...
    t = time.time() + np.random.uniform(0.005, 0.008)
    while True:
        if time.time() >= t:
            break
    return -0.5 * np.sum(theta ** 2)


data = np.random.randn(5000, 200)

sampler = emcee.EnsembleSampler(nwalkers, ndim, log_prob_data, args=(data,))
start = time.time()
sampler.run_mcmc(initial, nsteps, progress=True)
end = time.time()
serial_data_time = end - start
print("Serial took {0:.1f} seconds".format(serial_data_time))





100%|██████████| 100/100 [00:21<00:00,  4.53it/s]





Serial took 21.5 seconds





We basically get no change in performance when we include the data
argument here. Now let’s try including this naively using
multiprocessing:

with Pool() as pool:
    sampler = emcee.EnsembleSampler(
        nwalkers, ndim, log_prob_data, pool=pool, args=(data,)
    )
    start = time.time()
    sampler.run_mcmc(initial, nsteps, progress=True)
    end = time.time()
    multi_data_time = end - start
    print("Multiprocessing took {0:.1f} seconds".format(multi_data_time))
    print(
        "{0:.1f} times faster(?) than serial".format(serial_data_time / multi_data_time)
    )





100%|██████████| 100/100 [01:08<00:00,  1.63it/s]





Multiprocessing took 68.6 seconds
0.3 times faster(?) than serial





Brutal.

We can do better than that though. It’s a bit ugly, but if we just make
data a global variable and use that variable within the model
calculation, then we take no hit at all.

def log_prob_data_global(theta):
    a = data[0]  # Use the data somehow...
    t = time.time() + np.random.uniform(0.005, 0.008)
    while True:
        if time.time() >= t:
            break
    return -0.5 * np.sum(theta ** 2)


with Pool() as pool:
    sampler = emcee.EnsembleSampler(nwalkers, ndim, log_prob_data_global, pool=pool)
    start = time.time()
    sampler.run_mcmc(initial, nsteps, progress=True)
    end = time.time()
    multi_data_global_time = end - start
    print("Multiprocessing took {0:.1f} seconds".format(multi_data_global_time))
    print(
        "{0:.1f} times faster than serial".format(
            serial_data_time / multi_data_global_time
        )
    )





100%|██████████| 100/100 [00:06<00:00, 16.29it/s]





Multiprocessing took 6.4 seconds
3.4 times faster than serial





That’s better! This works because, in the global variable case, the
dataset is only pickled and passed between processes once (when the pool
is created) instead of once for every model evaluation.







          

      

      

    

  

    
      
          
            
  Note: This tutorial was generated from an IPython notebook that can be
downloaded here.


Autocorrelation analysis & convergence

In this tutorial, we will discuss a method for convincing yourself that
your chains are sufficiently converged. This can be a difficult subject
to discuss because it isn’t formally possible to guarantee convergence
for any but the simplest models, and therefore any argument that you
make will be circular and heuristic. However, some discussion of
autocorrelation analysis is (or should be!) a necessary part of any
publication using MCMC.

With emcee, we follow Goodman & Weare
(2010) [https://msp.org/camcos/2010/5-1/p04.xhtml] and recommend
using the integrated autocorrelation time to quantify the effects of
sampling error on your results. The basic idea is that the samples in
your chain are not independent and you must estimate the effective
number of independent samples. There are other convergence diagnostics
like the Gelman–Rubin
statistic [http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/305.pdf]
(Note: you should not compute the G–R statistic using multiple chains
in the same emcee ensemble because the chains are not independent!)
but, since the integrated autocorrelation time directly quantifies the
Monte Carlo error (and hence the efficiency of the sampler) on any
integrals computed using the MCMC results, it is the natural quantity of
interest when judging the robustness of an MCMC analysis.


Monte Carlo error

The goal of every MCMC analysis is to evaluate integrals of the form


\[\mathrm{E}_{p(\theta)}[f(\theta)] = \int f(\theta)\,p(\theta)\,\mathrm{d}\theta \quad.\]

If you had some way of generating \(N\) samples \(\theta^{(n)}\)
from the probability density \(p(\theta)\), then you could
approximate this integral as


\[\mathrm{E}_{p(\theta)}[f(\theta)] \approx \frac{1}{N} \sum_{n=1}^N f(\theta^{(n)})\]

where the sum is over the samples from \(p(\theta)\). If these
samples are independent, then the sampling variance on this estimator is


\[\sigma^2 = \frac{1}{N}\,\mathrm{Var}_{p(\theta)}[f(\theta)]\]

and the error decreases as \(1/\sqrt{N}\) as you generate more
samples. In the case of MCMC, the samples are not independent and the
error is actually given by


\[\sigma^2 = \frac{\tau_f}{N}\,\mathrm{Var}_{p(\theta)}[f(\theta)]\]

where \(\tau_f\) is the integrated autocorrelation time for the
chain \(f(\theta^{(n)})\). In other words, \(N/\tau_f\) is the
effective number of samples and \(\tau_f\) is the number of steps
that are needed before the chain “forgets” where it started. This means
that, if you can estimate \(\tau_f\), then you can estimate the
number of samples that you need to generate to reduce the relative error
on your target integral to (say) a few percent.

Note: It is important to remember that \(\tau_f\) depends on the
specific function \(f(\theta)\). This means that there isn’t just
one integrated autocorrelation time for a given Markov chain. Instead,
you must compute a different \(\tau_f\) for any integral you
estimate using the samples.




Computing autocorrelation times

There is a great discussion of methods for autocorrelation estimation in
a set of lecture notes by Alan
Sokal [https://pdfs.semanticscholar.org/0bfe/9e3db30605fe2d4d26e1a288a5e2997e7225.pdf]
and the interested reader should take a look at that for a more formal
discussion, but I’ll include a summary of some of the relevant points
here. The integrated autocorrelation time is defined as


\[\tau_f = \sum_{\tau=-\infty}^\infty \rho_f(\tau)\]

where \(\rho_f(\tau)\) is the normalized autocorrelation function of
the stochastic process that generated the chain for \(f\). You can
estimate \(\rho_f(\tau)\) using a finite chain
\(\{f_n\}_{n=1}^N\) as


\[\hat{\rho}_f(\tau) = \hat{c}_f(\tau) / \hat{c}_f(0)\]

where


\[\hat{c}_f(\tau) = \frac{1}{N - \tau} \sum_{n=1}^{N-\tau} (f_n - \mu_f)\,(f_{n+\tau}-\mu_f)\]

and


\[\mu_f = \frac{1}{N}\sum_{n=1}^N f_n \quad.\]

(Note: In practice, it is actually more computationally efficient to
compute \(\hat{c}_f(\tau)\) using a fast Fourier transform than
summing it directly.)

Now, you might expect that you can estimate \(\tau_f\) using this
estimator for \(\rho_f(\tau)\) as


\[\hat{\tau}_f \stackrel{?}{=} \sum_{\tau=-N}^{N} \hat{\rho}_f(\tau) = 1 + 2\,\sum_{\tau=1}^N \hat{\rho}_f(\tau)\]

but this isn’t actually a very good idea. At longer lags,
\(\hat{\rho}_f(\tau)\) starts to contain more noise than signal and
summing all the way out to \(N\) will result in a very noisy
estimate of \(\tau_f\). Instead, we want to estimate \(\tau_f\)
as


\[\hat{\tau}_f (M) = 1 + 2\,\sum_{\tau=1}^M \hat{\rho}_f(\tau)\]

for some \(M \ll N\). As discussed by Sokal in the notes linked
above, the introduction of \(M\) decreases the variance of the
estimator at the cost of some added bias and he suggests choosing the
smallest value of \(M\) where \(M \ge C\,\hat{\tau}_f (M)\) for
a constant \(C \sim 5\). Sokal says that he finds this procedure to
work well for chains longer than \(1000\,\tau_f\), but the situation
is a bit better with emcee because we can use the parallel chains to
reduce the variance and we’ve found that chains longer than about
\(50\,\tau\) are often sufficient.




A toy problem

To demonstrate this method, we’ll start by generating a set of “chains”
from a process with known autocorrelation structure. To generate a large
enough dataset, we’ll use celerite [http://celerite.readthedocs.io]:

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(1234)

# Build the celerite model:
import celerite
from celerite import terms

kernel = terms.RealTerm(log_a=0.0, log_c=-6.0)
kernel += terms.RealTerm(log_a=0.0, log_c=-2.0)

# The true autocorrelation time can be calculated analytically:
true_tau = sum(2 * np.exp(t.log_a - t.log_c) for t in kernel.terms)
true_tau /= sum(np.exp(t.log_a) for t in kernel.terms)
true_tau

# Simulate a set of chains:
gp = celerite.GP(kernel)
t = np.arange(2000000)
gp.compute(t)
y = gp.sample(size=32)

# Let's plot a little segment with a few samples:
plt.plot(y[:3, :300].T)
plt.xlim(0, 300)
plt.xlabel("step number")
plt.ylabel("$f$")
plt.title("$\\tau_\mathrm{{true}} = {0:.0f}$".format(true_tau), fontsize=14);
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Now we’ll estimate the empirical autocorrelation function for each of
these parallel chains and compare this to the true function.

def next_pow_two(n):
    i = 1
    while i < n:
        i = i << 1
    return i


def autocorr_func_1d(x, norm=True):
    x = np.atleast_1d(x)
    if len(x.shape) != 1:
        raise ValueError("invalid dimensions for 1D autocorrelation function")
    n = next_pow_two(len(x))

    # Compute the FFT and then (from that) the auto-correlation function
    f = np.fft.fft(x - np.mean(x), n=2 * n)
    acf = np.fft.ifft(f * np.conjugate(f))[: len(x)].real
    acf /= 4 * n

    # Optionally normalize
    if norm:
        acf /= acf[0]

    return acf


# Make plots of ACF estimate for a few different chain lengths
window = int(2 * true_tau)
tau = np.arange(window + 1)
f0 = kernel.get_value(tau) / kernel.get_value(0.0)

# Loop over chain lengths:
fig, axes = plt.subplots(1, 3, figsize=(12, 4), sharex=True, sharey=True)
for n, ax in zip([10, 100, 1000], axes):
    nn = int(true_tau * n)
    ax.plot(tau / true_tau, f0, "k", label="true")
    ax.plot(tau / true_tau, autocorr_func_1d(y[0, :nn])[: window + 1], label="estimate")
    ax.set_title(r"$N = {0}\,\tau_\mathrm{{true}}$".format(n), fontsize=14)
    ax.set_xlabel(r"$\tau / \tau_\mathrm{true}$")

axes[0].set_ylabel(r"$\rho_f(\tau)$")
axes[-1].set_xlim(0, window / true_tau)
axes[-1].set_ylim(-0.05, 1.05)
axes[-1].legend(fontsize=14);





[image: ../_images/autocorr_8_0.png]
This figure shows how the empirical estimate of the normalized
autocorrelation function changes as more samples are generated. In each
panel, the true autocorrelation function is shown as a black curve and
the empirical estimator is shown as a blue line.

Instead of estimating the autocorrelation function using a single chain,
we can assume that each chain is sampled from the same stochastic
process and average the estimate over ensemble members to reduce the
variance. It turns out that we’ll actually do this averaging later in
the process below, but it can be useful to show the mean autocorrelation
function for visualization purposes.

fig, axes = plt.subplots(1, 3, figsize=(12, 4), sharex=True, sharey=True)
for n, ax in zip([10, 100, 1000], axes):
    nn = int(true_tau * n)
    ax.plot(tau / true_tau, f0, "k", label="true")
    f = np.mean(
        [autocorr_func_1d(y[i, :nn], norm=False)[: window + 1] for i in range(len(y))],
        axis=0,
    )
    f /= f[0]
    ax.plot(tau / true_tau, f, label="estimate")
    ax.set_title(r"$N = {0}\,\tau_\mathrm{{true}}$".format(n), fontsize=14)
    ax.set_xlabel(r"$\tau / \tau_\mathrm{true}$")

axes[0].set_ylabel(r"$\rho_f(\tau)$")
axes[-1].set_xlim(0, window / true_tau)
axes[-1].set_ylim(-0.05, 1.05)
axes[-1].legend(fontsize=14);
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Now let’s estimate the autocorrelation time using these estimated
autocorrelation functions. Goodman & Weare (2010) suggested averaging
the ensemble over walkers and computing the autocorrelation function of
the mean chain to lower the variance of the estimator and that was what
was originally implemented in emcee. Since then, @fardal on GitHub
suggested that other estimators might have lower
variance [https://github.com/dfm/emcee/issues/209]. This is
absolutely correct and, instead of the Goodman & Weare method, we now
recommend computing the autocorrelation time for each walker (it’s
actually possible to still use the ensemble to choose the appropriate
window) and then average these estimates.

Here is an implementation of each of these methods and a plot showing
the convergence as a function of the chain length:

# Automated windowing procedure following Sokal (1989)
def auto_window(taus, c):
    m = np.arange(len(taus)) < c * taus
    if np.any(m):
        return np.argmin(m)
    return len(taus) - 1


# Following the suggestion from Goodman & Weare (2010)
def autocorr_gw2010(y, c=5.0):
    f = autocorr_func_1d(np.mean(y, axis=0))
    taus = 2.0 * np.cumsum(f) - 1.0
    window = auto_window(taus, c)
    return taus[window]


def autocorr_new(y, c=5.0):
    f = np.zeros(y.shape[1])
    for yy in y:
        f += autocorr_func_1d(yy)
    f /= len(y)
    taus = 2.0 * np.cumsum(f) - 1.0
    window = auto_window(taus, c)
    return taus[window]


# Compute the estimators for a few different chain lengths
N = np.exp(np.linspace(np.log(100), np.log(y.shape[1]), 10)).astype(int)
gw2010 = np.empty(len(N))
new = np.empty(len(N))
for i, n in enumerate(N):
    gw2010[i] = autocorr_gw2010(y[:, :n])
    new[i] = autocorr_new(y[:, :n])

# Plot the comparisons
plt.loglog(N, gw2010, "o-", label="G\&W 2010")
plt.loglog(N, new, "o-", label="new")
ylim = plt.gca().get_ylim()
plt.plot(N, N / 50.0, "--k", label=r"$\tau = N/50$")
plt.axhline(true_tau, color="k", label="truth", zorder=-100)
plt.ylim(ylim)
plt.xlabel("number of samples, $N$")
plt.ylabel(r"$\tau$ estimates")
plt.legend(fontsize=14);
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In this figure, the true autocorrelation time is shown as a horizontal
line and it should be clear that both estimators give outrageous results
for the short chains. It should also be clear that the new algorithm has
lower variance than the original method based on Goodman & Weare. In
fact, even for moderately long chains, the old method can give
dangerously over-confident estimates. For comparison, we have also
plotted the \(\tau = N/50\) line to show that, once the estimate
crosses that line, The estimates are starting to get more reasonable.
This suggests that you probably shouldn’t trust any estimate of
\(\tau\) unless you have more than \(F\times\tau\) samples for
some \(F \ge 50\). Larger values of \(F\) will be more
conservative, but they will also (obviously) require longer chains.




A more realistic example

Now, let’s run an actual Markov chain and test these methods using those
samples. So that the sampling isn’t completely trivial, we’ll sample a
multimodal density in three dimensions.

import emcee


def log_prob(p):
    return np.logaddexp(-0.5 * np.sum(p ** 2), -0.5 * np.sum((p - 4.0) ** 2))


sampler = emcee.EnsembleSampler(32, 3, log_prob)
sampler.run_mcmc(
    np.concatenate((np.random.randn(16, 3), 4.0 + np.random.randn(16, 3)), axis=0),
    500000,
    progress=True,
);





100%|██████████| 500000/500000 [07:18<00:00, 1139.29it/s]





Here’s the marginalized density in the first dimension.

chain = sampler.get_chain()[:, :, 0].T

plt.hist(chain.flatten(), 100)
plt.gca().set_yticks([])
plt.xlabel(r"$\theta$")
plt.ylabel(r"$p(\theta)$");
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And here’s the comparison plot showing how the autocorrelation time
estimates converge with longer chains.

# Compute the estimators for a few different chain lengths
N = np.exp(np.linspace(np.log(100), np.log(chain.shape[1]), 10)).astype(int)
gw2010 = np.empty(len(N))
new = np.empty(len(N))
for i, n in enumerate(N):
    gw2010[i] = autocorr_gw2010(chain[:, :n])
    new[i] = autocorr_new(chain[:, :n])

# Plot the comparisons
plt.loglog(N, gw2010, "o-", label="G\&W 2010")
plt.loglog(N, new, "o-", label="new")
ylim = plt.gca().get_ylim()
plt.plot(N, N / 50.0, "--k", label=r"$\tau = N/50$")
plt.ylim(ylim)
plt.xlabel("number of samples, $N$")
plt.ylabel(r"$\tau$ estimates")
plt.legend(fontsize=14);





[image: ../_images/autocorr_19_0.png]
As before, the short chains give absurd estimates of \(\tau\), but
the new method converges faster and with lower variance than the old
method. The \(\tau = N/50\) line is also included as above as an
indication of where we might start trusting the estimates.




What about shorter chains?

Sometimes it just might not be possible to run chains that are long
enough to get a reliable estimate of \(\tau\) using the methods
described above. In these cases, you might be able to get an estimate
using parametric models for the autocorrelation. One example would be to
fit an autoregressive
model [https://en.wikipedia.org/wiki/Autoregressive_model] to the
chain and using that to estimate the autocorrelation time.

As an example, we’ll use celerite [http://celerite.readthedocs.io]
to fit for the maximum likelihood autocorrelation function and then
compute an estimate of \(\tau\) based on that model. The celerite
model that we’re using is equivalent to a second-order ARMA model and it
appears to be a good choice for this example, but we’re not going to
promise anything here about the general applicability and we caution
care whenever estimating autocorrelation times using short chains.


Note

To run this part of the tutorial, you’ll need to install celerite [https://celerite.readthedocs.io] and autograd [https://github.com/HIPS/autograd].



from scipy.optimize import minimize


def autocorr_ml(y, thin=1, c=5.0):
    # Compute the initial estimate of tau using the standard method
    init = autocorr_new(y, c=c)
    z = y[:, ::thin]
    N = z.shape[1]

    # Build the GP model
    tau = max(1.0, init / thin)
    kernel = terms.RealTerm(
        np.log(0.9 * np.var(z)), -np.log(tau), bounds=[(-5.0, 5.0), (-np.log(N), 0.0)]
    )
    kernel += terms.RealTerm(
        np.log(0.1 * np.var(z)),
        -np.log(0.5 * tau),
        bounds=[(-5.0, 5.0), (-np.log(N), 0.0)],
    )
    gp = celerite.GP(kernel, mean=np.mean(z))
    gp.compute(np.arange(z.shape[1]))

    # Define the objective
    def nll(p):
        # Update the GP model
        gp.set_parameter_vector(p)

        # Loop over the chains and compute likelihoods
        v, g = zip(*(gp.grad_log_likelihood(z0, quiet=True) for z0 in z))

        # Combine the datasets
        return -np.sum(v), -np.sum(g, axis=0)

    # Optimize the model
    p0 = gp.get_parameter_vector()
    bounds = gp.get_parameter_bounds()
    soln = minimize(nll, p0, jac=True, bounds=bounds)
    gp.set_parameter_vector(soln.x)

    # Compute the maximum likelihood tau
    a, c = kernel.coefficients[:2]
    tau = thin * 2 * np.sum(a / c) / np.sum(a)
    return tau


# Calculate the estimate for a set of different chain lengths
ml = np.empty(len(N))
ml[:] = np.nan
for j, n in enumerate(N[1:8]):
    i = j + 1
    thin = max(1, int(0.05 * new[i]))
    ml[i] = autocorr_ml(chain[:, :n], thin=thin)





/Users/dforeman/anaconda3/lib/python3.6/site-packages/autograd/numpy/numpy_vjps.py:444: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use arr[tuple(seq)] instead of arr[seq]. In the future this will be interpreted as an array index, arr[np.array(seq)], which will result either in an error or a different result.
  return lambda g: g[idxs]

# Plot the comparisons
plt.loglog(N, gw2010, "o-", label="G\&W 2010")
plt.loglog(N, new, "o-", label="new")
plt.loglog(N, ml, "o-", label="ML")
ylim = plt.gca().get_ylim()
plt.plot(N, N / 50.0, "--k", label=r"$\tau = N/50$")
plt.ylim(ylim)
plt.xlabel("number of samples, $N$")
plt.ylabel(r"$\tau$ estimates")
plt.legend(fontsize=14);
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This figure is the same as the previous one, but we’ve added the maximum
likelihood estimates for \(\tau\) in green. In this case, this
estimate seems to be robust even for very short chains with
\(N \sim \tau\).







          

      

      

    

  

    
      
          
            
  Note: This tutorial was generated from an IPython notebook that can be
downloaded here.


Saving & monitoring progress

It is often useful to incrementally save the state of the chain to a
file. This makes it easier to monitor the chain’s progress and it makes
things a little less disastrous if your code/computer crashes somewhere
in the middle of an expensive MCMC run.

In this demo, we will demonstrate how you can use the new
backends.HDFBackend to save your results to a
HDF5 [https://en.wikipedia.org/wiki/Hierarchical_Data_Format] file
as the chain runs. To execute this, you’ll first need to install the
h5py library [http://www.h5py.org].

We’ll also monitor the autocorrelation time at regular intervals (see
Autocorrelation analysis & convergence) to judge convergence.

We will set up the problem as usual with one small change:

import emcee
import numpy as np

np.random.seed(42)

# The definition of the log probability function
# We'll also use the "blobs" feature to track the "log prior" for each step
def log_prob(theta):
    log_prior = -0.5 * np.sum((theta - 1.0) ** 2 / 100.0)
    log_prob = -0.5 * np.sum(theta ** 2) + log_prior
    return log_prob, log_prior


# Initialize the walkers
coords = np.random.randn(32, 5)
nwalkers, ndim = coords.shape

# Set up the backend
# Don't forget to clear it in case the file already exists
filename = "tutorial.h5"
backend = emcee.backends.HDFBackend(filename)
backend.reset(nwalkers, ndim)

# Initialize the sampler
sampler = emcee.EnsembleSampler(nwalkers, ndim, log_prob, backend=backend)





The difference here was the addition of a “backend”. This choice will
save the samples to a file called tutorial.h5 in the current
directory. Now, we’ll run the chain for up to 10,000 steps and check the
autocorrelation time every 100 steps. If the chain is longer than 100
times the estimated autocorrelation time and if this estimate changed by
less than 1%, we’ll consider things converged.

max_n = 100000

# We'll track how the average autocorrelation time estimate changes
index = 0
autocorr = np.empty(max_n)

# This will be useful to testing convergence
old_tau = np.inf

# Now we'll sample for up to max_n steps
for sample in sampler.sample(coords, iterations=max_n, progress=True):
    # Only check convergence every 100 steps
    if sampler.iteration % 100:
        continue

    # Compute the autocorrelation time so far
    # Using tol=0 means that we'll always get an estimate even
    # if it isn't trustworthy
    tau = sampler.get_autocorr_time(tol=0)
    autocorr[index] = np.mean(tau)
    index += 1

    # Check convergence
    converged = np.all(tau * 100 < sampler.iteration)
    converged &= np.all(np.abs(old_tau - tau) / tau < 0.01)
    if converged:
        break
    old_tau = tau





6%|▌         | 5900/100000 [00:56<14:59, 104.58it/s]





Now let’s take a look at how the autocorrelation time estimate (averaged
across dimensions) changed over the course of this run. In this plot,
the \(\tau\) estimate is plotted (in blue) as a function of chain
length and, for comparison, the \(N > 100\,\tau\) threshold is
plotted as a dashed line.

import matplotlib.pyplot as plt

n = 100 * np.arange(1, index + 1)
y = autocorr[:index]
plt.plot(n, n / 100.0, "--k")
plt.plot(n, y)
plt.xlim(0, n.max())
plt.ylim(0, y.max() + 0.1 * (y.max() - y.min()))
plt.xlabel("number of steps")
plt.ylabel(r"mean $\hat{\tau}$");





[image: ../_images/monitor_8_0.png]
As usual, we can also access all the properties of the chain:

import corner

tau = sampler.get_autocorr_time()
burnin = int(2 * np.max(tau))
thin = int(0.5 * np.min(tau))
samples = sampler.get_chain(discard=burnin, flat=True, thin=thin)
log_prob_samples = sampler.get_log_prob(discard=burnin, flat=True, thin=thin)
log_prior_samples = sampler.get_blobs(discard=burnin, flat=True, thin=thin)

print("burn-in: {0}".format(burnin))
print("thin: {0}".format(thin))
print("flat chain shape: {0}".format(samples.shape))
print("flat log prob shape: {0}".format(log_prob_samples.shape))
print("flat log prior shape: {0}".format(log_prior_samples.shape))

all_samples = np.concatenate(
    (samples, log_prob_samples[:, None], log_prior_samples[:, None]), axis=1
)

labels = list(map(r"$\theta_{{{0}}}$".format, range(1, ndim + 1)))
labels += ["log prob", "log prior"]

corner.corner(all_samples, labels=labels);





burn-in: 117
thin: 24
flat chain shape: (7680, 5)
flat log prob shape: (7680,)
flat log prior shape: (7680,)
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But, since you saved your samples to a file, you can also open them
after the fact using the backends.HDFBackend:

reader = emcee.backends.HDFBackend(filename)

tau = reader.get_autocorr_time()
burnin = int(2 * np.max(tau))
thin = int(0.5 * np.min(tau))
samples = reader.get_chain(discard=burnin, flat=True, thin=thin)
log_prob_samples = reader.get_log_prob(discard=burnin, flat=True, thin=thin)
log_prior_samples = reader.get_blobs(discard=burnin, flat=True, thin=thin)

print("burn-in: {0}".format(burnin))
print("thin: {0}".format(thin))
print("flat chain shape: {0}".format(samples.shape))
print("flat log prob shape: {0}".format(log_prob_samples.shape))
print("flat log prior shape: {0}".format(log_prior_samples.shape))





burn-in: 117
thin: 24
flat chain shape: (7680, 5)
flat log prob shape: (7680,)
flat log prior shape: (7680,)





This should give the same output as the previous code block, but you’ll
notice that there was no reference to sampler here at all.

If you want to restart from the last sample, you can just leave out the
call to backends.HDFBackend.reset():

new_backend = emcee.backends.HDFBackend(filename)
print("Initial size: {0}".format(new_backend.iteration))
new_sampler = emcee.EnsembleSampler(nwalkers, ndim, log_prob, backend=new_backend)
new_sampler.run_mcmc(None, 100)
print("Final size: {0}".format(new_backend.iteration))





Initial size: 5900
Final size: 6000





If you want to save additional emcee runs, you can do so on the
same file as long as you set the name of the backend object to
something other than the default:

run2_backend = emcee.backends.HDFBackend(filename, name="mcmc_second_prior")

# this time, with a subtly different prior
def log_prob2(theta):
    log_prior = -0.5 * np.sum((theta - 2.0) ** 2 / 100.0)
    log_prob = -0.5 * np.sum(theta ** 2) + log_prior
    return log_prob, log_prior


# Rinse, Wash, and Repeat as above
coords = np.random.randn(32, 5)
nwalkers, ndim = coords.shape
sampler2 = emcee.EnsembleSampler(nwalkers, ndim, log_prob2, backend=run2_backend)

# note: this is *not* necessarily the right number of iterations for this
# new prior.  But it will suffice  to demonstrate the second backend.
sampler2.run_mcmc(coords, new_backend.iteration, progress=True);





100%|██████████| 6000/6000 [00:49<00:00, 122.13it/s]





And now you can see both runs are in the file:

import h5py

with h5py.File(filename, "r") as f:
    print(list(f.keys()))





['mcmc', 'mcmc_second_prior']









          

      

      

    

  

    
      
          
            
  Note: This tutorial was generated from an IPython notebook that can be
downloaded here.


Using different moves

One of the most important new features included in the version 3 release
of emcee is the interface for using different “moves” (see
Moves for the API docs). To demonstrate this interface,
we’ll set up a slightly contrived example where we’re sampling from a
mixture of two Gaussians in 1D:

import numpy as np
import matplotlib.pyplot as plt


def logprob(x):
    return np.sum(
        np.logaddexp(-0.5 * (x - 2) ** 2, -0.5 * (x + 2) ** 2,)
        - 0.5 * np.log(2 * np.pi)
        - np.log(2)
    )


x = np.linspace(-5.5, 5.5, 5000)
plt.plot(x, np.exp(list(map(logprob, x))), "k")
plt.yticks([])
plt.xlim(-5.5, 5.5)
plt.ylabel("p(x)")
plt.xlabel("x");





[image: ../_images/moves_3_0.png]
Now we can sample this using emcee and the default
moves.StretchMove:

import emcee

np.random.seed(589403)

init = np.random.randn(32, 1)
nwalkers, ndim = init.shape

sampler0 = emcee.EnsembleSampler(nwalkers, ndim, logprob)
sampler0.run_mcmc(init, 5000)

print("Autocorrelation time: {0:.2f} steps".format(sampler0.get_autocorr_time()[0]))





Autocorrelation time: 40.03 steps





This autocorrelation time seems long for a 1D problem! We can also see
this effect qualitatively by looking at the trace for one of the
walkers:

plt.plot(sampler0.get_chain()[:, 0, 0], "k", lw=0.5)
plt.xlim(0, 5000)
plt.ylim(-5.5, 5.5)
plt.title("move: StretchMove", fontsize=14)
plt.xlabel("step number")
plt.ylabel("x");





[image: ../_images/moves_7_0.png]
For “lightly” multimodal problems like these, some combination of the
moves.DEMove and moves.DESnookerMove can often
perform better than the default. In this case, let’s use a weighted
mixture of the two moves. In deatil, this means that, at each step,
we’ll randomly select either a moves.DEMove (with 80%
probability) or a moves.DESnookerMove (with 20% probability).

np.random.seed(93284)

sampler = emcee.EnsembleSampler(
    nwalkers,
    ndim,
    logprob,
    moves=[(emcee.moves.DEMove(), 0.8), (emcee.moves.DESnookerMove(), 0.2),],
)
sampler.run_mcmc(init, 5000)

print("Autocorrelation time: {0:.2f} steps".format(sampler.get_autocorr_time()[0]))

plt.plot(sampler.get_chain()[:, 0, 0], "k", lw=0.5)
plt.xlim(0, 5000)
plt.ylim(-5.5, 5.5)
plt.title("move: [(DEMove, 0.8), (DESnookerMove, 0.2)]", fontsize=14)
plt.xlabel("step number")
plt.ylabel("x");





Autocorrelation time: 6.49 steps





[image: ../_images/moves_9_1.png]
That looks a lot better!

The idea with the Moves interface is that it should be
easy for users to try out several different moves to find the
combination that works best for their problem so you should head over to
Moves to see all the details!
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Testimonials


“My research—modeling strong gravitational lenses with 10-20 free
parameters—would be very difficult or impossible without emcee.”

—Shane Bussmann (CfA)




Since the initial release, emcee has been used in many published
scientific studies.
The most up-to-date list of citations to our paper—mostly positive ;-)—can be
found on The Astrophysics Data System (ADS) [https://ui.adsabs.harvard.edu/abs/2013PASP..125..306F/citations].
Here is a very incomplete list of users:


	Dorman, Guhathakurta, Fardal, et al. (2012) [https://arxiv.org/abs/1204.4455]


	Olofsson, Juhász, Henning, et al. (2012) [https://arxiv.org/abs/1204.2374]


	Bovy, Rix, Liu, et al. (2012) [https://arxiv.org/abs/1111.1724]


	Lang & Hogg (2012) [https://arxiv.org/abs/1103.6038]


	Bovy, Rix, Hogg, et al. (2012) [https://arxiv.org/abs/1202.2819]


	Bussmann, Gurwell, Fu, et al. (2012) [https://arxiv.org/abs/1207.2724]


	Brammer, Sánchez-Janssen, Labbé, et al. (2012) [https://arxiv.org/abs/1207.3795]


	Brown, Rosenfeld, Andrews, et al. (2012) [https://arxiv.org/abs/1209.1641]


	Bovy, Allende Prieto, Beers, et al. (2012) [https://arxiv.org/abs/1209.0759]


	Roškar, Debattista, & Loebman (2012) [https://arxiv.org/abs/1211.1982]


	Crossfield, Barman, Hansen, et al. (2012) [https://arxiv.org/abs/1210.4836]


	Morton (2012) [https://arxiv.org/abs/1206.1568]


	Monnier, Che, Zhao, et al. (2012) [https://arxiv.org/abs/1211.6055]


	Huppenkothen, Watts, Uttley, et al. (2012) [https://arxiv.org/abs/1212.1011]


	Cieza, Olofsson, Harvey, et al. (2013) [https://arxiv.org/abs/1211.4510]


	Weisz, Fouesneau, Hogg, et al. (2013) [https://arxiv.org/abs/1211.6105]


	Reis, Miller, Reynolds, et al. (2013) [https://arxiv.org/abs/1208.3277]


	Sanders, & Fabian (2013) [https://arxiv.org/abs/1212.1259]


	Akeret, Seehars, Amara, et al. (2012) [https://arxiv.org/abs/1212.1721]


	Riechers, Bradford, Clements, et al. (2013) [https://arxiv.org/abs/1304.4256]


	Kamruddin & Dexter (2013) [https://arxiv.org/abs/1306.3226]


	Sparre et al. (2013) [https://arxiv.org/abs/1309.2940]


	Price-Whelan & Johnston (2013) [https://arxiv.org/abs/1308.2670]


	Watkins, van de Ven, den Brok, et al. (2013) [https://arxiv.org/abs/1308.4789]


	Price-Whelan et al. (2013) [https://arxiv.org/abs/1311.3683]


	Guillochon, Manukian & Ramirez-Ruiz (2013) [https://arxiv.org/abs/1304.6397]


	Guillochon, Loeb, MacLeod & Ramirez-Ruiz (2014) [https://arxiv.org/abs/1401.2990]


	Cargile, James, Pepper, et al. (2014) [https://arxiv.org/abs/1312.3946]


	Keller et al. (2014) [https://arxiv.org/abs/1402.1517]


	Ransom et al. (2014) [https://arxiv.org/abs/1401.0535]


	Pérez et al. (2014) [https://arxiv.org/abs/1402.0832]


	Oliver et al. (2014) [http://dx.doi.org/10.1063/1.4866813]


	Narbutis et al. (2014) [https://arxiv.org/abs/1410.2514]


	Narbutis et al. (2014) [https://arxiv.org/abs/1410.2521]


	Schlaufman & Casey (2014) [https://arxiv.org/abs/1409.4775]


	Kirichenko et al. (2015) [https://arxiv.org/abs/1501.04594]


	Privon et al. (2015) [https://ui.adsabs.harvard.edu/abs/2015ApJ...814...39P]


	Lenz et al. (2016) [https://ui.adsabs.harvard.edu/abs/2016A%26A...586A.121L]


	Nelson et al. (2017) [https://github.com/refnx/refnx]


	Leiva et al. (2017) [http://dx.doi.org/10.3847/1538-3881/aa8956]




Please let us know if your work should be included
in this list or fork the repository [https://github.com/dfm/emcee] and add
it yourself.
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